Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2014

Supporting information

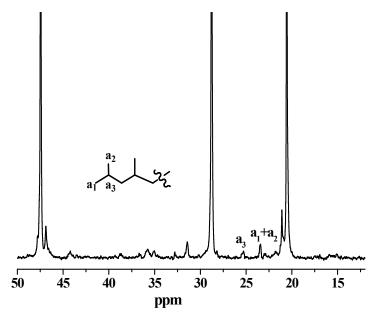
Living Syndiospecific Polymerization of Propylene with Sterically Encumbered Titanium Complexes activated by MMAO

Ying-Yun Long, Yong-Xia Wang, Bai-Xiang Li, Yan-Guo Li, Yue-Sheng Li*ab

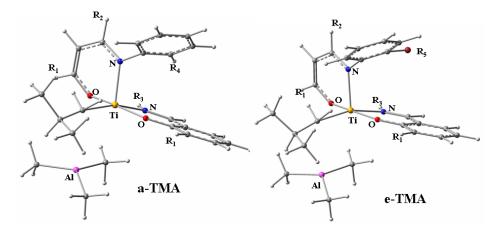
^a State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China, E-mail: ysli@ciac.jl.cn

Contents

- (1) **Table S1.** Propylene polymerization results
- (2) **Figure S1**. The aliphatic region of 13 C NMR spectra for low molecular weight syndiotactic polypropylene obtained by **1e**/MMAO systems (10 μ mol catalyst, polymerization time 20 min, polymerization temperature 0°C, $M_n = 9.0$ kg/mol, $M_w/M_n = 1.09$).
- (3) **Figure S2**. Calculated structures of propylene 1,2-inserted species of **1a** and **1e** in propylene polymerization activated by MMAO with free TMA. The groups R₁-R₃ are omitted. The red, blue, yellow and pink atoms represent oxygen, nitrogen, titanium and aluminum atoms, respectively.
- (4) **Figure S3.** The calculated structures of complex **1e**. The red, navy blue, blue, cambridge blue, green and yellow atoms represent oxygen, nitrogen, bromine, fluorine, chlorine and titanium atoms, respectively.
- (5) **Figure S4.** Plots of M_n and M_w/M_n vs reaction time for propylene polymerization with catalyst **1b** (10 µmol, using dried MAO as co-catalyst, Al/Ti = 500, polymerization at 0°C, propylene pressure 6 bar).
- (6) **Figure S5** The aliphatic region of ¹³C NMR spectra for syndiotactic poly(propylene) obtained by **1a** (entry 6, **Table 2**), **1b** (entry 9), **1d** (entry 13) and **1e** (entry 3) combined with MMAO at 0 °C, respectively.
- (7) Figure S6 ¹³C NMR spectra of the methyl region for syndiotactic poly(propylene) obtained


^b School of Material Science and Engineering, Tianjin University, Tianjin 300072, China

- by 1e at -10°C (a), 10°C (b), 25°C (c) combined with MMAO at 0 °C, respectively.
- (8) **Figure S7** ¹³C NMR spectra of the methyl region for syndiotactic poly(propylene) obtained by **1e** at 40°C (d), 55°C (e) and **1a** at 40°C (f) and 55°C (g) combined with MMAO at 0 °C, respectively.
- (9) **Figure S8** DSC curves of syndiotactic PPs at a heating rate of 10°C/min: (a) **1b**/MMAO catalyst system, $T_{\rm m} = 139.3$ °C, 135.2 °C; (b) **1d**/MMAO catalyst system, $T_{\rm m} = 136.5$ °C, 122.6 °C; (c) **1e**/MMAO catalyst system, $T_{\rm m} = 150.9$ °C, 138.0 °C.


Table S1 Propylene polymerization results^a

Entry	Cat.	Time (h)	Yield (g)	Activity ^b	$M_{ m w}{}^{ m c}$	$M_{\rm w}/M_{\rm n}^{\rm c}$	N(µmol)d	$T_{\rm m}^{\rm e}({}^{\circ}{\rm C})$
1	1a	2.0	0.92	46.0	158.9	1.22	7.06	146.2, 133.4
2	1b	2.0	1.10	55.0	170.2	1.23	7.93	137.3, 126.2
3	1c	2.0	0.88	44.0	138.5	1.25	7.94	137.2, 119.0
4	1d	2.0	0.80	40.0	137.0	1.23	7.18	138.5, 120.6
5	1b	0.5	0.29	58.0	45.5	1.19	7.58	135.9, 128.0
7	1b	1.0	0.55	55.0	90.2	1.20	7.32	136.3, 128.5
8	1b	3.0	1.36	52.0	240.5	1.29	7.29	138.4, 130.8
9	1c	0.5	0.23	46.0	43.0	1.20	6.48	136.8, 115.5
10	1c	3.0	1.14	38.0	245.3	1.27	5.92	138.3, 131.8
13	1d	0.5	0.20	40.0	38.5	1.18	6.12	134.3, 112.3
14	1d	3.0	1.11	37.0	235.0	1.25	5.90	137.0, 120.0

^a Polymerization conditions: 10 μmol catalyst, solvent 50 mL toluene, propylene pressure 6 bar; dMAO used as a cocatalyst, polymerization temperature 0°C. ^b Activity (kg/mol·h). ^c Determined by GPC data in 1,2,4-trichlorobenzene versus polystyrene standard. The unit of molecular weight is kg/mol. ^d Calculated from yield and M_n . ^eDetermined by DSC at a heating rate of 10°C/min.

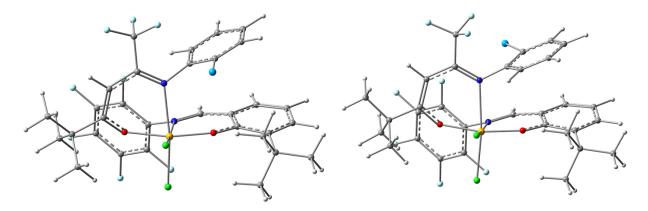
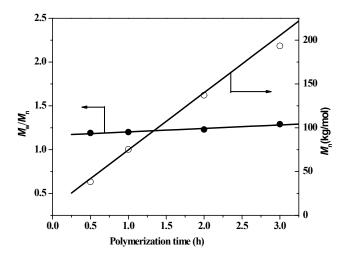
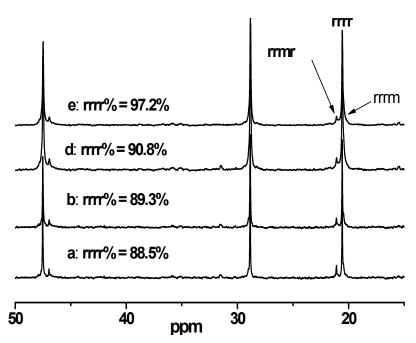
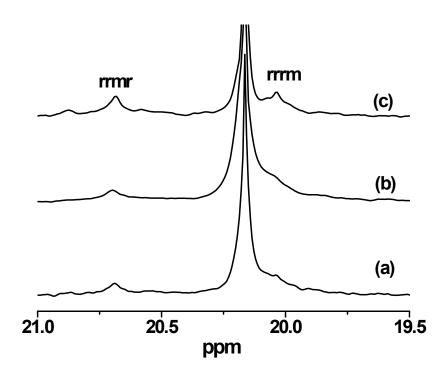


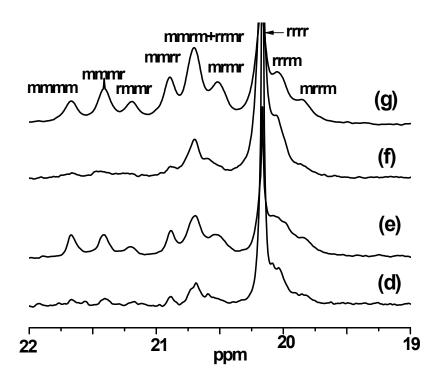
Figure S1. The aliphatic region of 13 C NMR spectra for low molecular weight syndiotactic polypropylene obtained by **1e**/MMAO systems (10µmol catalyst, polymerization time 20 min, polymerization temperature 0°C, $M_n = 9.0$ kg/mol, $M_w/M_n = 1.09$). The peaks at 23.3-23.6 ppm and 25.6 ppm are assigned to the methyl and methine carbons of isobutyl chain-end groups, respectively. No peaks assignable to other possible chain-end groups, namely ethyl, n-propyl, n-butyl, isopropyl, sec-butyl and isopentyl, were observed in the 13 C NMR spectrum. These results confirmed that the polymerization proceeded via 1,2-insertion of monomer.



 $R_1 = {}^{t}Bu, R_2 = CF_3, R_3 = C_6F_5, R_4 = H, R_5 = Br$


Figure S2. Calculated structures of propylene 1,2-inserted species of $\mathbf{1a}$ and $\mathbf{1e}$ in propylene polymerization activated by MMAO with free TMA. The groups R_1 - R_3 are omitted. The red, blue, yellow and pink atoms represent oxygen, nitrogen, titanium and aluminum atoms, respectively.


Figure S3. The calculated structures of complex **1e**. The red, navy blue, blue, cambridge blue, green and yellow atoms represent oxygen, nitrogen, bromine, fluorine, chlorine and titanium atoms, respectively.


Figure S4. Plots of M_n and M_w/M_n vs reaction time for propylene polymerization with catalyst **1b** (20 µmol, using dried MAO as co-catalyst, Al/Ti = 500, polymerization at 0°C, propylene pressure 6 bar).

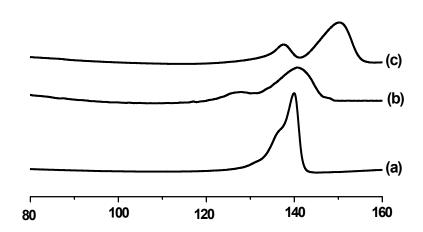

Figure S5. The aliphatic region of ¹³C NMR spectra for syndiotactic poly(propylene) obtained by **1a** (entry 6, **Table 2**), **1b** (entry 9), **1d** (entry 13) and **1e** (entry 3) combined with MMAO at 0 °C, respectively.

Figure S6 ¹³C NMR spectra of the methyl region for syndiotactic polypropylenes obtained by **1e** at -10°C (a), 10°C (b), 25°C (c) combined with MMAO at 0 °C, respectively.

Figure S7 ¹³C NMR spectra of the methyl region for syndiotactic polypropylenes obtained by **1e** at 40°C (d), 55°C (e) and **1a** at 40°C (f) and 55°C (g) combined with MMAO at 0 °C, respectively.

Figure S8. DSC curves of syndiotactic PPs at a heating rate of 10°C/min: (a) 1**b**/MMAO catalyst system, $T_{\rm m} = 139.3$ °C, 135.2 °C (entry 8, Table 2); (b) 1**d**/MMAO catalyst system, $T_{\rm m} = 140.5$ °C, 126.6 °C (entry 12, Table 2); (c) 1**e**/MMAO catalyst system, $T_{\rm m} = 150.9$ °C, 138.0 °C (entry 4, Table 2).