Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2014

Supporting Info

Methods

Matrix-assisted laser desorption and ionization time-of-flight (MALDI-ToF) measurements were obtained with a Shimadzu Axima CFR MALDI-ToF mass spectrometer, equipped with a nitrogen laser delivering 3 ns laser pulses at 337 nm. Dithranol (1,8,9-tris-hydroxy-anthracene) was used as a matrix. Samples were prepared by dissolving the polymer in CHCl₃ at a concentration of 10 g L⁻¹. A 10 mL aliquot of this solution was added to 10 mL of a 10 g L⁻¹ matrix solution and 1 mL of a potassium trifluoroacetic acid (KTFA) solution (0.1 M in methanol as a cationization agent). A 1 mL aliquot of the resulting mixture was applied to a multistage target to evaporate CHCl₃ and create a thin matrix/analyte film. The samples were measured in positive-ion mode and in the linear mode of the spectrometer. Gel-permeation chromatography (GPC) measurements were carried out in THF, with samples at a concentration of 1 g L⁻¹. Sample injection was performed by a 717 plus auto sampler (Waters) at 30 °C (THF). Flow was 1 mL min⁻¹. In THF, three SDV columns (PSS) were employed with the dimensions 300×80 mm, 10 µm particle size and pore sizes of 106, 104 und 500 Å. Detection was accomplished with DRI Shodex RI-101 detector (ERC) and UV-Vis S-3702 detector (Soma). Calibration was carried out using polystyrene standards provided by Polymer Standards Service.

Monomer	Catalyst	Polymer	Reaction time	Temperature	Ethylene removal	Mw	Mn	Mw/Mn
	[a]		[hr]	[°C]		[b]	[b]	[b]
1	2% G1	P1	1	80	Vacuum	3,000	1,600	2.5
1	2% G1	P1	12	80	Vacuum		gelation	
1	1.2% G1	P1	2	60	Vacuum		Oligomers	
1	1.2% G1	No reaction	2	r.t.	Vacuum			
1	0.5% G1	P1	0.5	80	Vacuum	2,500	1,000	2.5

Table S1 ATMET polymerizations: reaction conditions and molecular weights

[a] Grubbs catalyst 1st generation. [b] GPC in THF vs polystyrene standards

Fig. S1 ¹H NMR of triallyl-phosphate (500 MHz, 298 K, CDCl₃).

Fig. S2 ¹³C NMR of triallyl-phosphate (126 MHz, 298 K, CDCl₃).

Fig. S4 ¹H NMR of P1 (700 MHz, 298 K, CDCl₃).

Fig. S6 ³¹P NMR of P1 (283 MHz, 298 K, CDCl₃).

Fig. S7 TGA comparison between P1 and a linear unsaturated polyphosphoester (UPPE).

Fig. S8 Evidence of dimeric structure from ESI-MS: early metathesis step.

%Int.

Fig. S9 MALDI spectrum of P1. (Dithranol was used as a matrix and potassium trifluoroacetic

acid (KTFA) as a cationization agent)

Fig. S10 Representative GPC chromatogram of P1 in THF.

••