Electronic Supplementary Information

Double Thermoresponsive Di- and Triblock Copolymers Based on *N*-vinylcaprolactam and *N*-vinylpyrrolidone: Synthesis and Comparative Study of Solution Behavior.

Anthony Kermagoret,^a Kevin Mathieu,^a Jean-Michel Thomassin,^a Charles-André Fustin,^b Roland Duchêne,^b Christine Jérôme,^a Christophe Detrembleur,^a Antoine Debuigne^{a,*}

Figure S1. ¹H NMR spectra (CDCl₃ at 25 °C) of the P(*N*VCL-*stat*-*N*VP) statistical copolymers prepared by CMRP. (see entry 1 Table 1)

	PNVCL				PNVCL-block-P(NVCL-stat-NVP)					PNVCL-block-P(NVCL-stat-NVP)-block-PNVCL	
Entry	[NVCL]/ [R-Co ^{III}]	Time (h)	Conv. (%)	M _n (g/mol) ^a / Đ ^b	[<i>N</i> VP]/ [R-Co ^{III}]	Time (h)	M _n (g/mol) ^a / Đ ^b	Conv. (%) ^c		M _n (g/mol) ^a	In copolymer (mol %)
								NVCL	NVP	/ Đ _p	PNVP/PNVCL ^d
1	359/1	2.5	16	9500 / 1.07	431/1	3	41400 / 1.13	30	23	64500 / 1.24	57/43
2	359/1	5	27	18400 / 1.05	430/1	2	43100 / 1.08	43	19	71900 / 1.24	50/50
3	719/1	1.5	15	32800 / 1.06	858/1	0.5	57500 / 1.06	21	18	110500 / 1.13	35/65
4	880/1	1	23	39200 / 1.06	2725/1	0.5 ^e	76200/ 1.08	33	13	128000 / 1.13	50/50

Table S1. Block copolymers synthesis by cobalt-mediated radical copolymerization of *N*VCL and *N*VP in bulk at 40 °C.

^a Determined by SEC-MALLS in DMF containing LiBr. ^b Determined by SEC in DMF containing LiBr (Calibration PS). ^c Total conversion of monomers determined by ¹H NMR 250 MHz in CDCl₃. ^d Molar composition of triblocks determined by ¹H NMR 400 MHz in CDCl₃. ^e reaction at 30 °C.

Figure S2. Overlay of the turbidimetry curves for the P(*N*VCL-*stat*-*N*VP) statistical copolymers aqueous solutions (1 mg/mL) with various compositions (temperature ramp = 1 °C/min. (**A** $F_{NVP} = 0.18$, **B** $F_{NVP} = 0.27$, **C** $F_{NVP} = 0.42$, **D** $F_{NVP} = 0.49$, **E** $F_{NVP} = 0.57$)

R_h (nm)

Figure S3. Intensity normalized CONTIN size distribution of $C_{132}(C_{40}P_{172})$ and $C_{132}(C_{80}P_{344})C_{132}$ in water (1 g L⁻¹) at various temperatures.

Figure S4. Transmittance $(1 \, {}^{\circ}C \, min^{-1})$ (dotted line) and scattered intensity measured by DLS (full line) for the $C_{68}(C_{74}P_{191})$ diblock and the parent $C_{68}(C_{148}P_{382})C_{68}$ triblock aqueous solutions (1 g L⁻¹) as a function of temperature.

Figure S5. Intensity normalized CONTIN size distribution of $C_{68}(C_{74}P_{191})$ and $C_{68}(C_{148}P_{382})C_{68}$ in water (1 g L⁻¹) at various temperatures.

Figure S6. Transmittance $(1 \, {}^{\circ}C \, min^{-1})$ (dotted line) and scattered intensity measured by DLS (full line) for the C₂₃₆(C₅₅P₁₅₄) diblock and the parent C₂₃₆(C₁₁₀P₃₀₈)C₂₃₆ triblock aqueous solutions (1 g L⁻¹) as a function of temperature.

Figure S7. Intensity normalized CONTIN size distribution of $C_{236}(C_{55}P_{154})$ and $C_{236}(C_{110}P_{308})C_{236}$ in water (1 g L⁻¹) at various temperatures.

Figure S8. Transmittance (1 °C min^{-1}) (dotted line) and scattered intensity measured by DLS (full line) for the $C_{282}(C_{54}P_{594})C_{282}$ triblock $(1 \text{ g } L^{-1})$ in water and in 2M NaCl aqueous solutions as a function of temperature.

Figure S9. Intensity normalized CONTIN size distribution of $C_{282}(C_{27}P_{297})$ and $C_{282}(C_{54}P_{594})C_{282}$ in water (1 g L⁻¹) at various temperatures.

Figure S10. Intensity normalized CONTIN size distribution of $C_{282}(C_{27}P_{297})$ and $C_{282}(C_{54}P_{594})C_{282}$ in a 2 M NaCl aqueous solution (1 g L⁻¹) at various temperatures.

Figure S11. Transmittance (1 °C min⁻¹) for $C_{282}(C_{27}P_{297})$ diblock and $C_{282}(C_{54}P_{594})C_{282}$ triblock in a 2 M NaCl aqueous solution (1 g L⁻¹) during a heating-cooling cycle. Measurements recorded when increasing the temperature are represented in red. Blue corresponds to the cooling phase.

Figure S12. Intensity normalized CONTIN size distribution of $C_{282}(C_{27}P_{297})$ in a 2 M NaCl aqueous solution (1 g L⁻¹) at different temperatures during a heating-cooling cycle. DLS distributions obtained during the heating and the cooling phases are represented in red and blue, respectively.