Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2014

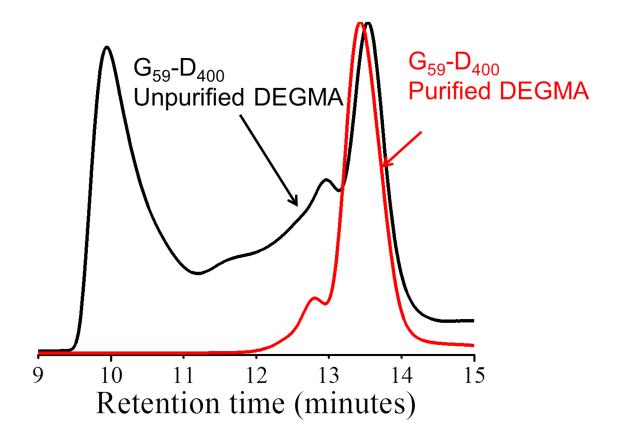
Supporting Information for:

Tuning the Critical Gelation Temperature of Thermo-responsive Diblock Copolymer Worm Gels

Victoria J. Cunningham¹, Liam P. D. Ratcliffe¹, Adam Blanazs¹, Nicholas J. Warren¹, Andrew Smith², Oleksandr O. Mykhaylyk^{1,*} and Steven P. Armes^{1,*}

¹Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK.

²Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK


Synthesis of PGMA-PDEGMA diblock copolymers via RAFT aqueous dispersion polymerization

A typical protocol for the synthesis of PGMA₅₉-PDEGMA₂₀₀ diblock copolymer via RAFT aqueous dispersion polymerization is as follows. PGMA₅₉ macro-CTA (0.30 g) and DEGMA (1.17 g, 6.23 mmol) were weighed into a 25 ml round-bottom flask and purged with N₂ for 15 min. ACVA (3.0 mg, 0.011 mmol; CTA/ACVA molar ratio = 3.0) was added to the flask and the mixture was degassed for 5 min. Water (13.21 ml, 10 wt %), was degassed separately for 30 min and added to the mixture, which was stirred until homogeneous and degassed for a further 10 min prior to immersion in an oil bath at 70 °C for 16 h. The resulting copolymer was analyzed by DMF GPC (M_n = 66,000 g mol⁻¹, M_w/M_n = 1.52 vs. PMMA standards).

Table S1. Summary of conversions, molecular weights and polydispersities obtained for a $PGMA_{59}$ macro-CTA precursor and various $PGMA_{59}$ -PDEGMA diblock copolymers (where G = PGMA and D = DEGMA).

Target Diblock Composition	Conversion ^a (%)	$M_{\rm n}{}^{\rm b}$	$M_{\rm w}/M_{\rm n}^{\rm b}$
G ₅₉ macro-CTA	-	16,000	1.18
G_{59} - D_{100}	>99	36,400	1.22
G_{59} - D_{120}	98	42,200	1.24
G_{59} - D_{140}	97	47,000	1.33
G_{59} - D_{160}	98	52,300	1.40
G_{59} - D_{180}	>99	59,000	1.47
G_{59} - D_{200}	>99	66,000	1.52
G_{59} - D_{220}	>99	70,300	1.98
G_{59} - D_{300}	>99	110,000	3.68
G_{59} - D_{400}	98	154,100	31.79
G_{59} - D_{400} ^c	>99	74,200	1.13

- a. Monomer conversion determined by ¹H NMR spectroscopy
- b. Determined by GPC using DMF eluent and a series of near-monodisperse poly(methyl methacrylates) as calibration standards
- c. After purification of DEGMA monomer using silica column chromatography (see also Figure S1 below).

Figure S1. DMF GPC curves obtained for PGMA₅₉-PDEGMA₄₀₀ diblock copolymers synthesised using either unpurified DEGMA monomer (Aldrich, 95%) or DEGMA purified by silica column chromatography (where G = PGMA and D = PDEGMA).