Synthesis of Squaraine-based alternated copolymers via metal-free

condensation

J. Oriou^{a,b,c}, F. Ng^{a,b,c}, G. Hadziioannou^{a,b,c}, G. Garbay^{a,b,c}, M. Bousquet^{a,b,c}, L. Vignau,^{d,e,f} E.

Cloutet^{a,b,c †} and C. Brochon^{a,b,c†}

^a Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie des Polymères

Organiques (LCPO), UMR 5629, 16 Avenue Pey-Berland, 33607 Pessac Cedex, France

^b University of Bordeaux, Laboratoire de Chimie des Polymères Organiques (LCPO), UMR

5629, 16 Avenue Pey-Berland, 33607 Pessac Cedex, France

^c Institut Polytechnique de Bordeaux (IPB), Laboratoire de Chimie des Polymères Organiques

(LCPO), UMR 5629, 16 Avenue Pey-Berland, 33607 Pessac Cedex, France

^{*d*} Centre National de la Recherche Scientifique (CNRS), Laboratoire de L'Intégration du Matériau au Système (IMS), UMR 5629, 16 Avenue Pey-Berland, 33607 Pessac Cedex, France.

^e University of Bordeaux, Laboratoire de L'Intégration du Matériau au Système (IMS), UMR 5629, 16 Avenue Pey-Berland, 33607 Pessac Cedex, France.

^{*f*} Institut Polytechnique de Bordeaux (IPB), Laboratoire de L'Intégration du Matériau au Système (IMS), UMR 5629, 16 Avenue Pey-Berland, 33607 Pessac Cedex, France.

[†] Authors for correspondence: <u>eric.cloutet@enscbp.fr</u> and <u>Cyril.brochon@enscbp.fr</u>

Supporting Information

¹H-¹³C Heteronuclear Single Quantum Correlation (HSQC) NMR spectroscopy

The monomers and polymers were characterized by ¹H-¹³C HSQC NMR spectroscopy recorded on a Bruker 400 MHz spectrometer from a deuterated chloroform (CDCl₃) solution with tetramethysilane (TMS) as an internal reference.

2,5-Bis[(5-bromo-1-hexadecyl-3,3-dimethyl-2,3-dihydroindole-2ylidene)methyl]cyclobutendiylium-1,3-diolate (5)

2,5-bis(2,3,3-trimethyl-3H-indol-6-yl)thiophene (6)

 $2,5-bis (1-hexadecyl-2,3,3-trimethyl-3H-indol-6-ium) thiophene\ diiodide\ (7)$

4,7-bis(2,3,3-trimethyl-3H-indol-5-yl)benzothiadiazole (8)

 $\textit{4,7-bis(1-hexadecyl-2,3,3-trimethyl-3H-indol-5-ium)} benzothiadiazole\ diiodide\ (\textbf{9})$

 $Poly(bis(hexadecyl) squaraine-alt-thiophene) \ (\textbf{PSQT}) \ via \ Stille \ polycondensation$

f1 (ppm)

 $Poly(bis(hexadecyl) squaraine-alt-thiophene) \ (PSQT) \ via \ SA \ polycondensation$

Poly(bis(hexadecyl)squaraine-alt-benzothiadiazole) (PSQBT) via SA polycondensation

IR spectra of the polymers

IR spectrum (ATR) of PSQT-a.

IR spectrum (ATR) of PSQT-b.

IR spectrum (ATR) of PSQBT-a.

IR spectrum (ATR) of PSQBT-b.

Size Exclusion Chromatograms

PSQBT synthesized by Suzuki coupling - THF Soxhlet fraction

ID	JO080_THF
Method	ConvRI_Et3N_18-09-13-0000.vcm
Acq. Date	Sep 20, 2013 - 01:11:12
Solvent	CHCl3_1%Triethylamine
Column	HxL_2000_3000_4000
Flow Rate	1.0000
Inj Vol	75.0
Col Temp	30.00
Conc	6.5000

Sample	Mn	Mw	Mz	Мр	Mw/Mn	Ret Vol
2013-09-20_01;11;12_JO080_THF_01.vd	5 814	9 785	14 211	12 649	1.683	19.300

OMNISEC www.malvern.com/viscotek

PSQBT synthesized by Suzuki coupling - $CHCl_3$ Soxhlet fraction

ID	JO080_CHCI3
Method	ConvRI_Et3N_18-09-13-0000.vcm
Acq. Date	Sep 19, 2013 - 22:52:52
Solvent	CHCl3_1%Triethylamine
Column	HxL_2000_3000_4000
Flow Rate	1.0000
Inj Vol	75.0
Col Temp	30.00
Conc	4.0000

Sample	Mn	Mw	Mz	Мр	Mw/Mn	Ret Vol
2013-09-19_22;52;52_JO080_CHCl3_01.	13 508	17 568	24 056	13 218	1.301	19.233

PSQT synthesized by Stille coupling - THF Soxhlet fraction

ID	JO081_THF
Method	ConvRI_Et3N_18-09-13-0000.vcm
Acq. Date	Sep 20, 2013 - 01:57:20
Solvent	CHCI3_1%Triethylamine
Column	HxL_2000_3000_4000
Flow Rate	1.0000
Inj Vol	75.0
Col Temp	30.00
Conc	6.0000

Sample	Mn	Mw	Mz	Мр	Mw/Mn	Ret Vol
2013-09-20_01;57;20_JO081_THF_01.vd	9 325	23 026	53 868	27 086	2.469	18.220

PSQT synthesized by Stille coupling - \mbox{CHCl}_3 Soxhlet fraction

ID	JO081_CHCl3
Method	Conv_Et3N_18-09-13-0005.vcm
Acq. Date	Sep 19, 2013 - 20:34:30
Solvent	CHCI3_1%Triethylamine
Column	HxL_2000_3000_4000
Flow Rate	1.0000
Inj Vol	75.0
Col Temp	30.00
Conc	5.0000

Sample	Mn	Mw	Mz	Мр	Mw/Mn	Ret Vol
2013-09-19_20;34;30_JO081_CHCl3_01.	19 861	54 091	115 371	28 355	2.723	18.207

PSQT synthesized by squaric acid condensation - THF Soxhlet fraction

D	JO166_THF
Method	ConvRI_Et3N_18-09-13-0000.vcm
Acq. Date	Sep 20, 2013 - 00:25:06
Solvent	CHCI3_1%Triethylamine
Column	HxL_2000_3000_4000
Flow Rate	1.0000
Inj Vol	75.0
Col Temp	30.00
Conc	5.0000

Sample	Mn	Mw	Mz	Мр	Mw/Mn	Ret Vol
2013-09-20_00;25;06_JO166_THF_01.vd	12 124	26 876	53 186	22 917	2.217	18.437

PSQ1 synthesized by squaric acid condensation - CHCI ₃ Soxniet Ira

ID	JO166_CHCl3
Method	Conv_Et3N_18-09-13-0005.vcm
Acq. Date	Sep 18, 2013 - 03:41:08
Solvent	CHCI3_1%Triethylamine
Column	HxL_2000_3000_4000
Flow Rate	1.0000
Inj Vol	75.0
Col Temp	30.00
Conc	5.0000

Sample	Mn	Mw	Mz	Мр	Mw/Mn	Ret Vol
2013-09-18_03;41;08_JO166_CHCl3_01.	23 614	48 110	91 288	39 685	2.037	17.793

PSQBT synthesized by squaric acid condensation - THF Soxhlet fraction

ID	JO172_THF
Method	ConvRI_Et3N_18-09-13-0000.vcm
Acq. Date	Sep 20, 2013 - 02:43:28
Solvent	CHCI3_1%Triethylamine
Column	HxL_2000_3000_4000
Flow Rate	1.0000
Inj Vol	75.0
Col Temp	30.00
Conc	5.0000

Sample	Mn	Mw	Mz	Мр	Mw/Mn	Ret Vol
2013-09-20_02;43;28_JO172_THF_01.vd	8 472	19 895	38 151	32 252	2.348	18.000

PSQBT synthesized by squaric acid condensation - CHCl₃ Soxhlet fraction

D	JO172_CHCl3
Method	Conv_Et3N_18-09-13-0005.vcm
Acq. Date	Sep 19, 2013 - 21:20:36
Solvent	CHCI3_1%Triethylamine
Column	HxL_2000_3000_4000
Flow Rate	1.0000
Inj Vol	75.0
Col Temp	30.00
Conc	5.0000

Sample	Mn	Mw	Mz	Мр	Mw/Mn	Ret Vol
2013-09-19_21;20;36_JO172_CHCl3_01.	36 529	79 001	145 201	77 765	2.163	17.017

Thermogravimetric Analyses

PSQT obtained by SA condensation

Differential Scanning Calorimetry

Temperature (°C)

PSQT obtained by Stille coupling

100

150

200 250 Universal V4.7A TA Instruments

-0.6 -150 Exo Up

-100

-50

0

50

Temperature (°C)

PSQT obtained by SA condensation

Electrochemical characterizations in CHCl₃ solutions (left: oxidation - right: reduction)

PSQT obtained by Stille coupling

PSQBT obtained by Suzuki coupling

Preliminary studies for photovoltaic characterizations

The polymers obtained by Pd-catalyzed couplings were solubilized with $PC_{60}BM$ at different ratios in ODCB, and subsequently spin-casted onto a glass substrate coated with a PEDOT-PSS layer, simulating conditions similar to the active layer in a typical direct-architecture BHJ solar cell.

Photoluminescence of the polymers:PCBM blends in film

The previously obtained films were then excited at 650 nm to induce the photoluminescence of the polymers.

AFM images (phase) of the polymers:PCBM blends (1:1 ratio) in film

PSQT:PCBM (1:1)

0.00 Deg

PSQBT:PCBM (1:1)

0.00 Deg

Photovoltaic performance of PSQBT-PCBM blends

The devices were fabricated by using the previously prepared PSQBT-a polymer blended with [6,6]-phenyl-C61 butyric acid methyl ester (PSQBT:PCBM).

Substrates (glass coated with ITO) were cleaned in an ultrasonic bath in methanol and isopropanol. After drying the substrate a thin layer (~50 nm) of PEDOT-PSS was spin-coated at 4000 rpm and dried at 110 °C under rotary pump vacuum for 1 h. All procedures after PEDOT:PSS deposition were performed in an inert-atmosphere glovebox of nitrogen (O2 and H2O<0.1 ppm). Different blend ratio of PSQBT and PCBM were prepared by making 24 mg/mL solutions in o-dichlorobenzene (o-DCB). The photoactive layer (PCBT:PCBM 1:1 wt%) was spin-coated on the top of the PEDOT-PSS layer from o-dichlorobenzene (o-DCB) solutions at 50 °C. The thickness of the photoactive layer was typically in the range of 80 nm. The aluminium cathode was thermally deposited (100 nm) through a shadow mask with a base pressure of 10-7 mbar. The active areas of the devices were ca. 8.4 mm². An annealing treatment was performed at 120°C after the cathode deposition during 20 minutes. The current density-voltage (J-V) characteristics were measured with a Keithley 4200 SCS under an illumination of 100 mW/cm² from a K.H.S. Solar Celltest 575 solar simulator with AM1.5 filters and in the dark. Results are presented in the table below.

%w Polymer in active layer	Annealing	$V_{OC}(V)$	J_{SC} (mA/cm ²)	FF	PCE (%)
90	none	0.343	0.057	0.25	0.005
	120°C 20min	0.401	0.055	0.25	0.006
	none	0.251	0.732	0.26	0.048
80	120°C 20min	0.271	0.479	0.25	0.033
	none	0.274	0.683	0.27	0.050
70	120°C 20min	0.264	1.047	0.30	0.084
	none	0.249	1.470	0.31	0.115
60	120°C 20min	0.261	1.025	0.31	0.084
50	none	0.259	1.967	0.34	0.172
	120°C 20min	0.261	1.315	0.34	0.117
	none	0.261	2.015	0.33	0.176
40	120°C 20min	0.254	1.336	0.35	0.120
30	none	0.254	1.804	0.33	0.150
	120°C 20min	0.254	1.592	0.38	0.152
20	none	0.287	2.384	0.35	0.241
	120°C 20min	0.269	2.146	0.39	0.226
10	none	0.113	2.735	0.27	0.083
	120°C 20min	0.322	3.029	0.40	0.395