Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2014

# Supplementary Information for the Manuscript

# Block ionomer complexes consisting of siRNA and aqueous RAFT-synthesized hydrophilic-block-cationic copolymers: The influence of cationic block length on gene suppression

Andrew C. Holley,<sup>a</sup> Keith H. Parsons,<sup>a</sup> Wenming Wan,<sup>a</sup> Daniel F. Lyons,<sup>b</sup> G. Reid Bishop,<sup>c</sup> John J. Correia,<sup>b</sup> Faqing Huang,<sup>d</sup> and Charles L. McCormick<sup>a,d\*</sup>

<sup>a</sup>The Department of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg MS 39406, USA

<sup>b</sup>The Department of Biochemistry, The University of Mississippi Medical Center, Jackson MS 39211, USA

<sup>c</sup>The Department of Chemistry and Biochemistry, Belhaven University, Jackson MS 39202, USA

<sup>d</sup>The Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg MS 39406, USA

\*Corresponding author e-mail: charles.mccormick@usm.edu

## **Contents of Supporting Information:**

Materials and methods for determining cell viability of P2, P3, and P4.

Solution DSC methods for determining  $\Delta H_{Cal}$ ,  $\Delta H_{VH}$ ,  $\Delta S$ , and  $\Delta G$ .

<sup>1</sup>H NMR Spectra of **P1**, **P2**, **P3**, and **P4** (macroCTA and chain extensions with DMAPMA) presented in **Figure S1**.

Uv/Vis determination of the folic acid content in Figure S2.

Circular dichroism melting spectra for GLuc DNA in **Figure S3**.

Circular dichroism melting spectra for siRNA in Figure S4.

Heating and cooling solution DSC thermograms for GLuc DNA, P2, P3, P4, DNA-P2, DNA-P3, and DNA-P4 complexes in Figure S5.

Solution DSC thermograms illustrating the scan rate dependence of GLuc DNA, DNA-P2, DNA-P3, and DNA-P4 complexes in Figure S6.

Cell viability assays of P2, P3, and P4 in Figure S7.

Thermodynamic determinations ( $T_m$ ,  $\Delta H_{Cal}$ ,  $\Delta H_{VH}$ ,  $\Delta S$ ,  $\Delta G$ ) of the duplex denaturation event in **Table S1**.

#### **Materials and Methods:**

Cell viability assays were performed using a Vybrant MTT Cell Proliferation Assay Kit (Invitrogen). KB-GLuc (KB cells over expressing *Gaussia* Luciferase) cells were seeded in a 96-well microplate (Nucleon) with a cell density of 12000 cells/well. Cells were incubated with a fixed concentration of hydrophilic-block-cationic copolymer (**P2-P4**, ~0.2 mg/mL) to mimic siRNA delivery conditions. Cells were incubated for 24 h and 48 h before adding 10 μL of a 12mM MTT reagent to each well. The cells were further incubated for an additional 4 h, followed by adding 100 μL of a SDS (10 %)/HCl (0.01 M) solution to each well. The absorbance was read at 570 nm with a Synergy2 MultiMode Microplate reader (BioTek).

All calorimetric experiments were carried out using a Calorimetric Sciences Corporation Nano DSC-II solution differential scanning calorimeter (DSC). Sodium cacadylate buffer (10 mM, pH 7.2) was used for the running buffer. The GLuc DNA (analogue of *Gaussia* Luciferase siRNA) concentration was maintained at 75  $\mu$ M while the concentrations of poly[(HPMA-*stat*-APMA)-*block*-DMAPMA] (**P2-P4**) copolymers were adjusted to maintain a nitrogen-to-phosphate (N:P) ratio equal to 1 (i.e. neutral complexes). CpCalc (Version 2.1, Calorimetric Sciences Corp.) was used to subtract buffer-buffer scans from buffer-sample scans. Linear-polynomial baselines were applied to each scan for the determination of molar heat capacity values. Since  $\Delta H = \int (\Delta C_p/dT)$ , the area of each peak yields the calorimetric enthalpy ( $\Delta H_{Cal}$ ), and the peak maximum yields the melting temperature ( $T_m$ ). Furthermore,  $\Delta S = \int [(\Delta C_p/T)/dT]$ , so the calorimetric Gaussian fits were re-plotted as  $\Delta C_p/T$  versus T to yield a new curve; the area of which is the entropy. The van't Hoff enthalpy ( $\Delta H_{VH}$ ) was determined by methods reported by Crothers<sup>2</sup> and Breslauer<sup>3</sup> (equation 1)

$$\Delta H_{VH} = \frac{b}{\frac{1}{T_1} - \frac{1}{T_2}}$$

in which b represents the molecularity in cal/(mol\*K),  $T_1$  is the temperature at half-width and half-max below the  $T_m$ , and  $T_2$  is the temperature at half-width and half-max above the  $T_m$  (in Kelvin). After determining the enthalpy and entropy, the Gibbs free energy may be ascertained by the following relationship  $\Delta G = \Delta H_{Cal} - T\Delta S$  at 37 °C (310.15 K). Since solution DSC has no ASTM standard, the GLuc

DNA was utilized as a standard, because most importantly, the DNA sample has a well-defined structure (e.g. no triplex or quadruplex formation), and furthermore, the complexes are derived from GLuc DNA. The  $\Delta H_{Cal}$  of GLuc DNA was normalized to its  $\Delta H_{VH}$ , and the corresponding  $\Delta H_{Cal}$  of the GLuc DNA/hydrophilic-block-cationic copolymer complexes were scaled appropriately.

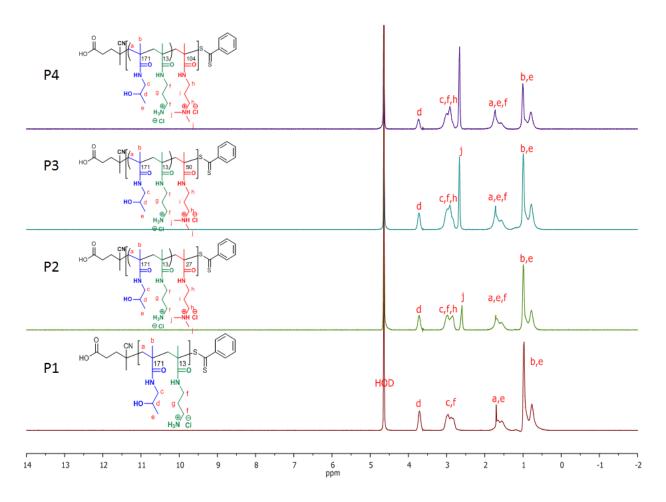
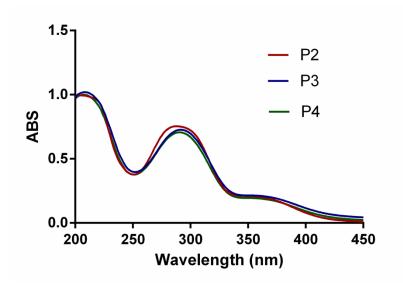




Figure S1. <sup>1</sup>H NMR of P1, P2, P3, and P4 (the macroCTA and subsequent chain extensions with DMAPMA).



**Figure S2**. Uv-Vis spectroscopy of conjugated folic acid **P2** (red), **P3** (Blue), and **P4** (Green) hydrophilic-*block*-cationic copolymers.

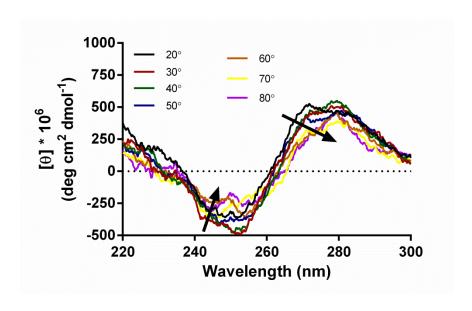
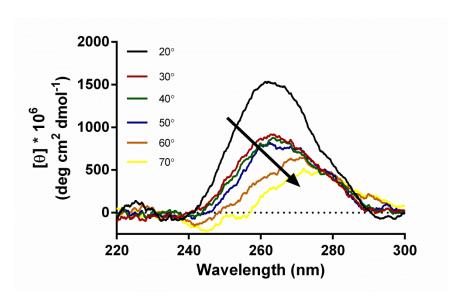
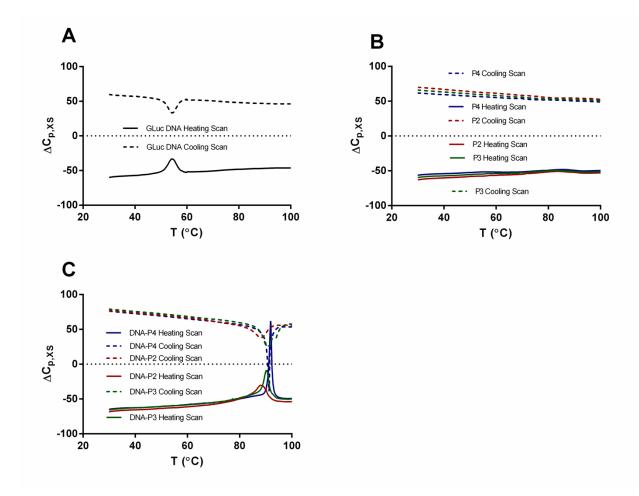
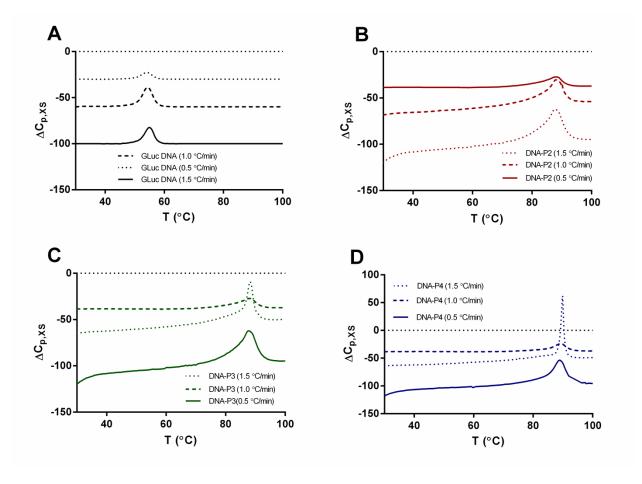
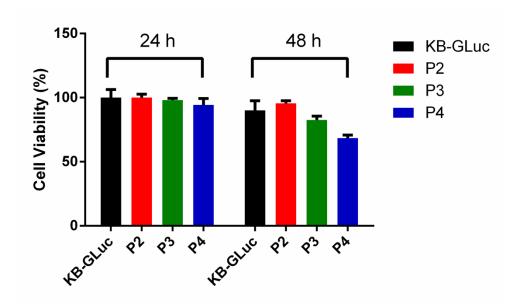



Figure S3. Circular dichroism melting spectra of GLuc DNA.



Figure S4. Circular dichroism melting spectra for siRNA.



**Figure S5**. Heating and cooling solution DSC thermograms for (A) GLuc DNA, (B) hydrophilic-*block*-cationic copolymers (**P2-P4**), and (C) DNA-hydrophilic-*block*-cationic copolymer complexes. No hysteresis is evident between heating and cooling (i.e. these systems are reversible).



**Figure S6**. Solution DSC thermograms illustrating the scan rate dependence for (A) GLuc DNA, (B) DNA-**P2** complexes, (C) DNA-**P3** complexes, and (D) DNA-**P4** complexes. The melting temperature  $(T_m)$  remains constant with respect to scan rate (i.e. these systems are in equilibrium).



**Figure S7**. Cell viability assays of **P2**, **P3**, and **P4** after 24 and 48 hours. The cell viability was determined relative to KB-GLuc cells. Error bars represent the standard deviation from triplicate experiments. The concentration of hydrophilic-*block*-cationic copolymer was maintained ~0.2 mg/mL to represent delivery conditions.

**Table S1**. The melting temperature ( $T_m$ ) calorimetric enthalpy ( $\Delta H_{Cal}$ ), van't Hoff enthalpy ( $\Delta H_{VH}$ ), binding enthalpy ( $\Delta H_{Binding}$ ), entropy ( $\Delta S$ ) Gibb's free energy ( $\Delta G$ ) for GLuc DNA and GLuc DNA-hydrophilic-*block*-cationic copolymer complexes.

| Sample   | ΔH <sub>Cal</sub><br>(kcal/mol) | ΔΗ <sub>νΗ</sub><br>(kcal/mol) | ΔS<br>(kcal/K*mol) | ΔG (kcal/mol) | T <sub>m</sub> (°C) | ΔH <sub>Binding</sub><br>(kcal/mol) |
|----------|---------------------------------|--------------------------------|--------------------|---------------|---------------------|-------------------------------------|
| Gluc DNA | 240                             | 240                            | 106                | 204           | 54.4                | N/A                                 |
| DNA-P2   | 420                             | 367                            | 120                | 340           | 88.4                | 160                                 |
| DNA-P3   | 483                             | 686                            | 140                | 413           | 90.2                | 223                                 |
| DNA-P4   | 461                             | 1900                           | 143                | 393           | 91.8                | 201                                 |

# References:

- 1. D. S. Pilch, in *Current Protocols in Nucleic Acid Chemistry*, John Wiley & Sons, Inc., 2001.
- 2. J. Gralla and D. M. Crothers, *J. Mol. Biol.*, 1973, **78**, 301–319.

K. J. Breslauer, in *Energetics of Biological Macromolecules*, ed. G. K. A. B. T.-M. in E. Michael L. Johnson, Academic Press, 1995, vol. Volume 259, pp. 221–242. 3.