Supporting Information

Diindenocarbazole-based large bandgap copolymers for high-performance organic solar cells with large open circuit voltages

Lixin Wang, Dongdong Cai, Zhigang Yin, Changquan Tang, Shan-Ci Chen and Qingdong Zheng,*

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China E-mail: qingdongzheng@fjirsm.ac.cn

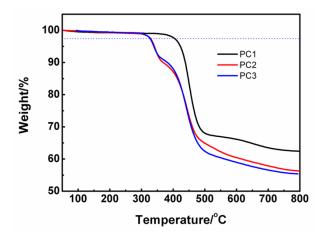
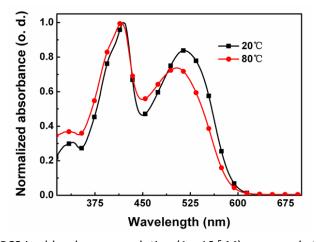
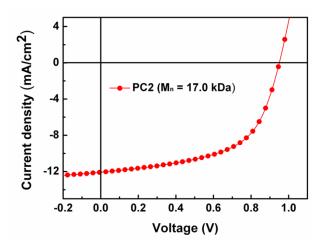
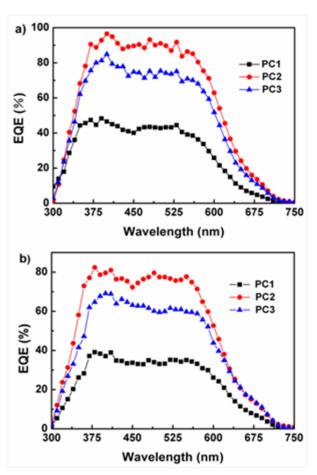


Figure S1. TGA plots of the polymers with a heating rate of 10 °C/min under an inert atmosphere.

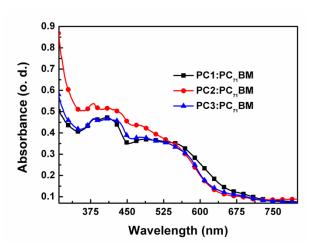

Figure S2. UV-vis spectra of PC2 in chlorobenzene solution (1 \times 10⁻⁵ M) measured at 20 °C and at 80 °C, respectively.

Figure S3. Current density-voltage (*J-V*) curve of the optimized conventional PSC based on PC2 (low molecular weight) blended with PC₇₁BM (1:4, w/w), under AM 1.5G illumination (100 mW/cm²).

Figure S4. EQE curves of the conventional PSCs (a) and the inverted PSCs (b) based on PCx:PC $_{71}$ BM with 0.5% (v/v) DIO as additive.

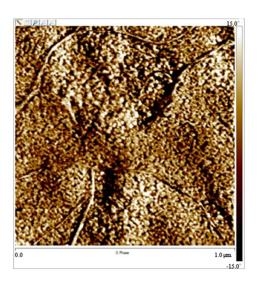
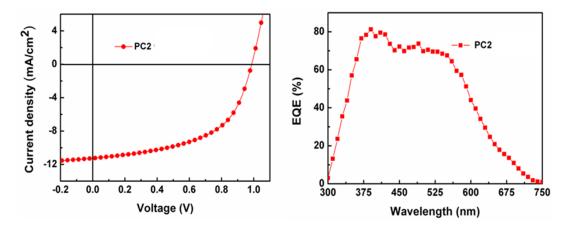


Figure S5. Normalized UV-vis absorption spectra of the polymer:PC₇₁BM blend films spin-coated under the same conditions as the fabrication of the optimized PSCs.


Table S1 Photovoltaic performance of the optimized inverted PSCs, under the illumination of AM 1.5G, 100 mW/cm²

Polymer ^a	D:A ^b	$V_{oc}\left[\mathbf{V}\right]$	J_{sc} [mA cm ⁻²]	FF [%]	PCE ^c [%]	
PC1	1:4	0.75 ± 0.04	5.13 ± 0.33	45.3 ± 2.9	$1.73 \pm 0.16 (1.84)$	
PC2	1:4	0.92 ± 0.02	10.85 ± 0.25	59.3 ± 1.3	$5.91 \pm 0.26 (6.17)$	
PC3	1:4	0.94 ± 0.01	9.17 ± 0.31	61.5 ± 4.7	$5.28 \pm 0.47 (5.75)$	

^a A mixed solvent of *o*-DCB:CB (1:4, v/v) containing 0.5% (v/v) DIO is used. ^b Blend ratio of polymer: PC₇₁BM. ^c The data have been averaged over 8 devices of different batches. The performance of the best device is given in parentheses.

Figure S6. Tapping-mode AFM phase image of the blend film of PC1:PC₇₁BM processed with 0.5% (v/v) DIO. The scan size is $1.0 \, \mu m \times 1.0 \, \mu m$.

Figure S7. Current density-voltage (*J-V*) curve (left) and EQE spectrum (right) of the polymer solar cell based on PC2:PC₇₁BM (1:4, w/w) without DIO treatment, under the illumination of AM 1.5G, 100 mW/cm².

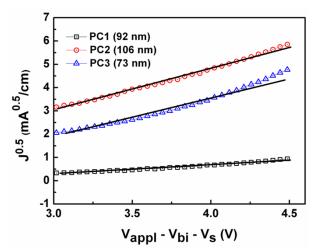


Figure S8. $J^{1/2}$ -V characteristics of PC1, PC2, and PC3 based hole-only devices measured at the ambient temperature.

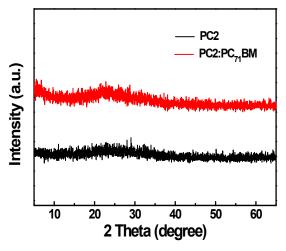


Figure S9. X-ray diffraction pattern of PC2 and PC2:PC₇₁BM film.