Supplemental Information

A new oligo(hexafluoropropylene oxide)-*b*-oligo(ethylene oxide) block co-oligomeric surfactant obtained by radical reactions

Jiří Lapčík ^{1,2}, Olinda Gimello², Vincent Ladmiral², Bruno Ameduri^{2*}, and Chadron Mark Friesen^{3*}

¹Department of Organic Chemistry, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic, ²Ingenierie et Architectures Macromoleculaires, Institut Charles Gerhardt, Ecole Nationale Superieure de Chimie de Montpellier (UMR5253-CNRS), 8, rue de l'Ecole Normale, 34296 Montpellier Cedex 1, France; ³Department of Chemistry, Trinity Western University, Langley, British Columbia, V2Y 1Y1, Canada

E-Mail: chad.friesen@twu.ca

Table of Contents

Figure S1: ¹ H-NMR spectrum of AllyI-PEG-OCH ₃ 4
Figure S2: ¹³ C-NMR spectrum of AllyI-PEG-OCH ₃ 5
Figure S3: ¹ H-NMR spectrum of C ₆ F ₁₃ CH ₂ CHICH ₂ OH initiated by TBPPI6
Figure S4. ¹ H-NMR spectrum of allyl alcohol (CH ₂ =CHCH ₂ OH)7
Figure S5: ¹⁹ F-NMR spectrum of C ₆ F ₁₃ CH ₂ CHICH ₂ OH initiated by TBPPI8
Figure S6: ¹⁹ F-NMR spectrum of 1-iodo-perfluorohexane (C ₆ F ₁₃ I)9
Figure S7: ¹³ C-NMR spectrum of C ₆ F ₁₃ CH ₂ CHICH ₂ OH initiated by TBPPI10
Figure S8: ¹³ C-NMR spectrum of 1-iodo-perfluorohexane (C ₆ F ₁₃ I)11
Figure S9: ¹³ C-NMR spectrum of allyl alcohol (CH ₂ =CHCH ₂ OH)12
Figure S10: Electron Impact (EI) Quadrople Mass Spectrum of C ₆ F ₁₃ CH ₂ CHICH ₂ OH13
Figure S11: ¹ H-NMR spectrum of C ₆ F ₁₃ CH ₂ CHICH ₂ O(CH ₂ CH ₂ O) _{9.5} CH ₃ (37.4% purity)14
Figure S12: ¹⁹ F-NMR spectrum of C ₆ F ₁₃ CH ₂ CHICH ₂ O(CH ₂ CH ₂ O) _{9.5} CH ₃ 15
Figure S13: ¹³ C-NMR spectrum of C ₆ F ₁₃ CH ₂ CHICH ₂ O(CH ₂ CH ₂ O) _{9.5} CH ₃ 16
Figure S14. Gas Chromatography/mass spectrometry of the reaction of $C_6F_{13}I$ with BPO. (A)
Chromatograpy of products, (B) Mass Spectrum of C_6F_{13} PhI where 126, 253, and 522 m/z are PhCF ₂ +,
IPhCF ₂ +, and C ₆ F ₁₃ PhI, respectively17
Figure S15: Electron Impact (EI) Quadrople Mass Spectrum of 1-iodo-2-oligo(hexafluoropropylene
oxide)perfluoropropane (F[CF(CF ₃)CF ₂ O] _{8.9} CF(CF ₃)CF ₂ I)18
Figure S16: Electron Impact (EI) Quadrople Mass Spectrum of F[CF(CF ₃)CF ₂ O] _{8.9} CF(CF ₃)CF ₂ CH ₂ CHICH ₂ OH.
Figure S17: ¹ H-NMR spectrum of $F[CF(CF_3)CF_2O]_{9.6}CF(CF_3)CF_2CH_2CHICH_2OH initiated by TBPPI20$
Figure S18: ¹ H-NMR spectrum of F[CF(CF ₃)CF ₂ O] _{8.9} CF(CF ₃)CF ₂ CH ₂ CHICH ₂ OH initiated by AIBN21
Figure S19: ¹⁹ F-NMR spectrum of 1-iodo-2-oligo(hexafluoropropylene
oxide)perfluoropropane(F[CF(CF ₃)CF ₂ O] _{8.9} CF(CF ₃)CF ₂ I)22
Figure S20: ¹⁹ F-NMR spectrum of F[CF(CF ₃)CF ₂ O] _{8.9} CF(CF ₃)CF ₂ CH ₂ CHICH ₂ OH initiated by TBPPI23
Figure S21: ¹³ C-NMR spectrum of F[CF(CF ₃)CF ₂ O] _{8.9} CF(CF ₃)CF ₂ CH ₂ CHICH ₂ OH initiated by TBPPI24
Figure S22: ¹³ C-NMR spectrum of 1-iodo-2-oligo(hexafluoropropylene
$oxide) perfluoropropane (F[CF(CF_3)CF_2O]_{8.9}CF(CF_3)CF_2I). \dots 25$
Figure S23: Negative Mode, Atmospheric pressure Solids Analysis Probe (ASAP) mass spectrum (MS) of
1-iodo-2-oligo(hexafluoropropylene oxide) perfluoropropane (F[CF(CF ₃)CF ₂ O] _{8.9} CF(CF ₃)CF ₂ I)26
Figure S24: Matrix assisted laser desorption ionization-time-of-flight mass spectrum (MALDI-TOF-MS) of
1-iodo-2-oligo(hexafluoropropylene oxide) perfluoropropane (F[CF(CF ₃)CF ₂ O] _{8.9} -CF(CF ₃)CF ₂ I)27
Figure S25: Atmospheric pressure Solids Analysis Probe (ASAP) Mass Spectrum (MS) of F[CF(CF ₃)CF ₂ O] _{8.9}
CF(CF ₃)CF ₂ CH ₂ CHICH ₂ OH initiated by TBPPI
Figure S26. Matrix assisted laser desorption ionization (Positive ion mode)-time of flight- mass spectrum
of F[CF(CF ₃)CF ₂ O] _{8.9} CF(CF ₃)CF ₂ CH ₂ CH ₂ CHICH ₂ OH (using as matrix DCTB and LiCl as the cationizing agent)29
Figure S27: ¹ H-NMR spectrum of the reaction of 1-iodo-2-oligo(hexafluoropropylene
oxide)perfluoropropane($F[CF(CF_3)CF_2O]_{8,9}CF(CF_3)CF_2I$)with benzoyl peroxide initiated by BPO

Figure S28: ¹ H-NMR spectrum of F[CF(CF ₃)CF ₂ O] _{8.9} CF(CF ₃)CF ₂ CH ₂ CH ₂ CH ₂ O(CH ₂ CH ₂ O) _{9.5} CH ₃ initiated by
AIBN
Figure S29: ¹⁹ F-NMR spectrum of F[CF(CF ₃)CF ₂ O] _{8.9} CF(CF ₃)CF ₂ CH ₂ CHICH ₂ O(CH ₂ CH ₂ O) _{9.5} CH ₃ initiated by BPO 32
Figure S30: ¹³ C-NMR spectrum of $F[CF(CF_3)CF_2O]_{8.9}CF(CF_3)CF_2CH_2CHICH_2O(CH_2CH_2O)_{9.5}CH_3$ initiated by
AIBN
Figure S31: Atmospheric pressure Solids Analysis Probe (ASAP) Mass Spectrum (MS) of
$F[CF(CF_3)CF_2O]_{8.9}CF(CF_3)CF_2CH_2CHICH_2O(CH_2CH_2O)_{9.5}CH_3 \text{ initiated by BPO}34$
Figure S32: Matrix assisted laser desorption ionization-time-of-flight mass spectrum (MALDI-TOF-MS) of
F[CF(CF ₃)CF ₂ O] _{8.9} CF(CF ₃)CF ₂ CH ₂ CH ₂ CH ₂ O(CH ₂ CH ₂ O) _{9.5} CH ₃ initiated by BPO35
Figure S33. Comparison of the 19 F-NMR expansions of the reaction C ₆ F ₁₃ I with the initiator (TBPPi, AIBN,
BPO) and initiator with allyl alcohol
Figure S34. Comparison of the ¹⁹ F-NMR expansions of the reaction of $C_6F_{13}I$ with the initiator (TBPPi,
AIBN, BPO) and initiator with ally-O-PEG-OCH ₃
Figure S35. Comparison of the 19 F-NMR expansions of the reaction of oligo(HFPO)-CF(CF ₃)CF ₂ I with the
initiator (TBPPi, AIBN, BPO) and initiator with ally-O-PEG-OCH ₃ 38
Figure S36: ¹³ C-NMR spectrum , Attached Proton Test (APT), of 1-iodo-2-methyl-3-[2-(poly(hexafluoro-
propylene oxide) perfluoropropyl]-propane. A side reaction of 1-iodo-2-oligo(hexafluoropropylene
oxide)perfluoropropane ($F[CF(CF_3)CF_2O]_{8.9}CF(CF_3)CF_2I$) with TBPPI
Figure S37: Atmospheric pressure Solids Analysis Probe (ASAP) Mass Spectrum (MS) of 1-iodo-2-
methyl-3-[2-(poly(hexafluoropropylene oxide)perfluoropropyl]-propane, side reaction of 1-iodo-2-
$oligo (hexa fluoropropylene \ oxide) perfluoropropane \ (F[CF(CF_3)CF_2O]_{8.9}CF(CF_3)CF_2I) \ with \ TBPPI. \ \dots \ 40$
$\label{eq:Figure S38: 1} \mbox{H-NMR spectrum of } F[CF(CF_3)CF_2O]_{8.9} CF(CF_3)CF_2CH_2CH_2CH_2O(CH_2CH_2O)_{9.5} CH_3$
Figure S39: ¹⁹ F-NMR spectrum of F[CF(CF ₃)CF ₂ O] _{8.9} CF(CF ₃)CF ₂ CH ₂ CH ₂ CH ₂ O(CH ₂ CH ₂ O) _{9.5} CH ₃ 42
Figure S40: ¹³ C-NMR spectrum of $F[CF(CF_3)CF_2O]_{8.9}CF(CF_3)CF_2CH_2CH_2CH_2O(CH_2CH_2O)_{9.5}CH_3$
Figure S41. Positive mode atmospheric pressure solids analysis probe (ASAP) mass spectrum (MS) of
oligo(HFPO)-CH ₂ CH ₂ CH ₂ -oligo(PEG)44
Figure S42. Positive ion mode MALDI-TOF-MS spectrum of oligo(HFPO)-CF ₂ CH ₂ CH ₂ CH ₂ -oligo(PEG) (using
as matrix DCTB and LiCl as the cationizing agent), 1807 m/z is $x = 8$ and $y = 5$. The insert expansion m/z
between 1850 and 2100 displays 166 m/z-repeat unit for HFPO [CF(CF ₃)CF ₂ O] and 44 m/z-repeat unit of
ethylene oxide (CH ₂ CH ₂ O)45
Figure S43: Surface Tension measurement of ammonium perfluorooctanoate $(C_7F_{15}C(O)O^-NH_4^+)$, CMC =
3.77 g/L46
Figure S44: Positive mode atmospheric pressure solids analysis probe (ASAP)-time-of-flight-mass
spectrum (MS) of oligo(HFPO)-CH ₂ CH ₂ CH ₂ OH, in trifluorotoluene47
Figure S45: Negative ion mode MALDI-TOF-MS spectrum of oligo(HFPO)- CH ₂ CH ₂ CH ₂ OH, in
trifluorotoluene (using as matrix DCTB and LiCl as the cationizing agent)48

¹H NMR (400 MHz, C₆D₆, 25°C) δ = 5.85 (ddt, CH_aH_b=C<u>H_c</u>CH₂-, ³J_{HcHb(trans)}=17.34 Hz, ³J_{HcHa(cis)}=10.36 Hz, ³J_{HcHa(CH2)}=5.81 Hz, 1H), 5.20 (ddt, CH_a<u>H_b</u>=CH_cCH₂-, ²J_{HbHa}=1.77 Hz, ³J_{HbHc(trans)}=17.18 Hz, ⁴J_{HbH(CH2)}=1.77 Hz, 1H), 5.11 (dm, C<u>H_o</u>H_b=CH_cCH₂-, ³J_{HaHc(cis)}=10.36 Hz, 1H), 3.96 (dm, CH_aH_b=CH_cC<u>H₂O-</u>, ³J_{H(CH2)Hc}=5.56 Hz, 2H), 3.53 (t, -OC<u>H₂</u>CH₂OCH3, ³J_{HH}=5.5 Hz, 2H), 3.55-3.61 (m,- CH₂O-, 19 X 2H), 3.31 (s, -OCH₃, ⁴J_{HH}=0.72 Hz, 3H), 3.48 (t, -C<u>H₂OCH₃</u>, ³J_{HH}=5.5 Hz, 2H).

Figure S2: ¹³C-NMR spectrum of Allyl-PEG-OCH₃.

¹³C NMR (101 MHz, C₆D₆, 25°C) δ = 135.97 (s, 1C, –CH=), 116.0 (s, 1C, =CH₂), 72.07 (s, 1C, <u>C</u>H₂-allyl), 72.07 (s, 1C, <u>C</u>H₂–CH₂–OMe), 70.74 (s, 19 X 1C, -<u>C</u>H₂–O), 58.65 (s, 1C, <u>C</u>H₃).

¹H NMR (400 MHz, CDCl₃, 25°C): δ = 4.31 (quin, -CH₂C<u>H</u>ICH₂OH, ³J_{HH}=6.57 Hz, 1H), 3.80, 3.74 (-CH₂CHIC<u>H</u>_aH_bOH, ²J_{HaHb}=12.13 Hz, 1H), 3.78, 3.73(d, -CH₂CHICH_a<u>H</u>_bOH, ²J_{HbHa}=12.13 Hz, 1H) 3.01 (m, -CF₂C<u>H</u>_aH_bCHI-, 1H), 2.65 (m, -CF₂CH_a<u>H</u>_bCHI-, 1H), 2.95(-CH₂O<u>H</u>, 1H).

¹H NMR (400 MHz, Neat, 25°C) $\delta = 6.10$ (ddt, $CH_aH_b=C\underline{H}_cCH_2$ -, ${}^{3}J_{HcHb(trans)}=16.84$ Hz, ${}^{3}J_{HcHa(cis)}=10.61$ Hz, ${}^{3}J_{HcH(CH2)}=5.05$ Hz, 1H), 5.44 (broad, $-O\underline{H}$, 1H), 4.22 (dt, $CH_aH_b=CH_cC\underline{H}_2O$ -, ${}^{3}J_{H(CH2)Hc}=5.31$ Hz, ${}^{4}J_{H(CH2)H(a+b)} = 1.52$ Hz, 2H), 5.41 (ddt, $CH_a\underline{H}_b=CH_cCH_2$ -, ${}^{2}J_{HbHa}=1.77$ Hz, ${}^{3}J_{HbHc(trans)}=17.20$ Hz, ${}^{4}J_{HbH(CH2)}=1.77$ Hz, 1H), 5.24 (ddt, $C\underline{H}_aH_b=CH_cCH_2$ -, ${}^{2}J_{HaHb}=1.52$, ${}^{3}J_{HaHc(cis)}=10.54$ Hz, ${}^{4}J_{HaH(CH2)}=1.52$, 1H).

¹⁹F NMR (376.41 MHz, CDCl₃, 25°C): δ = -81.06 (CF3-, ³J_{FF}=10.33, ⁴J_{FF}=2.30 Hz, 3F), -126.36(m, CF₃CF₂(CF₂)₄CH₂-, 2F), -123.77(m, -CF₂(CF₂)₃CH₂-, 2F), -123.05 (m, -CF₂(CF₂)₂CH₂-, 2F), -121.97(m, -CF₂CF₂CF₂CH₂-, 2F), -113.17, -114.20 (dm, ²J_{FF}=144.68 Hz, 2F).

Figure S6: ¹⁹F-NMR spectrum of 1-iodo-perfluorohexane (C₆F₁₃I).

¹⁹F NMR (376.41 MHz, neat, 25°C): δ = -59.19(m, CF2I, 2F), -80.19(tm, C<u>F</u>₃-, ³J_{FF} =9.4 Hz, 3F), -126.19(m, CF₃C<u>F</u>₂(CF₂)₄I, 2F), -122.79(m, -C<u>F</u>₂(CF₂)₃I, 2F), -121.17 (m, -C<u>F</u>₂(CF₂)₂I, 2F), -113.17(m, -C<u>F</u>₂CF ₂I, 2F)

Figure S7: ¹³C-NMR spectrum of C₆F₁₃CH₂CHICH₂OH initiated by TBPPI.

¹³C NMR (101 MHz, CDCl₃, 25°C) δ = 118.49 (qt, <u>C</u>F₃CF₂- ¹J_{CF}=288.34 Hz, ²J_{CF}= 33.66 Hz), 117.70 (tt, -CF₂<u>C</u>F₂CH₂-, ¹J_{CF}=257.61 Hz, ²J_{CF} = 32.20 Hz), 110.87 (m, -CF₂<u>C</u>F₂CF₂-, 4C), 67.78 (s, -<u>C</u>H₂OH, 1C), 37.18 (t, -CF₂<u>C</u>H₂CHI-, ²J_{CF} = 20.49 Hz, 1C), 20.4 (s, -CH₂<u>C</u>HICH₂OH, 1C).

Figure S8: ¹³C-NMR spectrum of 1-iodo-perfluorohexane (C₆F₁₃I).

¹³C NMR (101 MHz, C_6D_6 capillary, 25°C) δ = 117.03 (qt, <u>C</u>F₃CF2-, ¹J_{CF} = 287.61 Hz, ²J_{CF} = 32.93 Hz, 1C), 110.01 (tquin, -CF₂<u>C</u>F₂CF₂-, ¹J_{CF} = 275.17 Hz, ²J_{CF} = 32.93 Hz, 1C), 109.82(tsext, CF₃<u>C</u>F₂CF₂-, ¹J_{CF} = 277.37 Hz, ²J_{CF} = 33.67 Hz, 1C), 108.49 (tquin, -CF₂<u>C</u>F₂CF₂-, ¹J_{CF} = 270.78 Hz, ²J_{CF} = 33.66 Hz, 1C), 108.36 (tquin, -CF₂<u>C</u>F₂CF₂-, ¹J_{CF} = 265.66 Hz, ²J_{CF} = 32.20 Hz, 1C), 92.97 (tt, I<u>C</u>F₂CF₂-, ¹J_{CF} = 320.54 Hz, ²J_{CF} = 42.45 Hz, 1C).

¹³C NMR (101 MHz, C₆D₆, 25°C) δ = 138.53 (s, CH₂=<u>C</u>H₂CH₂OH, 1C), 115.26 (s, <u>C</u>H₂=CH₂CH₂OH, 1C), 63.8(s, CH₂=CH₂<u>C</u>H₂OH, 1C)

504 m/z = $C_6F_{13}CH_2CHICH_2OH$

377 m/z = $C_6F_{13}CH_2CHICH_2OH$ -iodide

357 m/z = $C_6F_{13}CH_2CHICH_2OH$ -iodide -HF

Figure S11: ¹H-NMR spectrum of C₆F₁₃CH₂CHICH₂O(CH₂CH₂O)_{9.5}CH₃ (37.4% purity).

1H NMR (400 MHz, CDCl₃, 25 °C): 4.35 (m, $-CH_2C\underline{H}ICH_2OH$, 1H), 3.80, 3.74 ($-CH_2CHIC\underline{H}_aH_bO-$, ${}^{2}J_{HaHb}$ =10.86 Hz, 1H), 3.65, 3.64(d, $-CH_2CHICH_a\underline{H}_eOH$, ${}^{2}J_{HbHa}$ =10.86 Hz, 1H) 3.16 (s, $-OCH_3$, ${}^{4}J_{HH}$ =0.72 Hz, 3H), 3.35 (t, $-OC\underline{H}_2CH_2OCH3$, ${}^{3}J_{HH}$ =5.3 Hz, 2H), 3.33 (t, $-C\underline{H}_2OCH_3$, ${}^{3}J_{HH}$ =6.3 Hz, 2H), 3.5-3.4 (m, $-CH_2O-$, 19 X 2H), 3.14-3.03 (m, $-CF_2C\underline{H}_aH_bCHI-$, 1H), 2.70-2.59 (m, $CF_2CH_a\underline{H}_bCHI-$, 1H).

Figure S12: ¹⁹F-NMR spectrum of C₆F₁₃CH₂CHICH₂O(CH₂CH₂O)_{9.5}CH₃

¹⁹F NMR (376.41 MHz, DMSO capillary, 25°C): δ = -80 (t, C<u>F</u>₃-, ³J_{FF} =9.4 Hz, 3F), -112.24 (d, -CF_aF_bCH₂-, ²J_{FaFb}=273.06 Hz, 1F), -112.83 (d, -CF_aF_bCH₂-, ²J_{FbFa}=273.06 Hz, 1F), 2F), -120.73 (m, -C<u>F</u>₂CF₂CH₂-, 2F), -121.78(m, -C<u>F</u>₂(CF₂)₂CH₂-, 2F), -122.62 (m, C<u>F</u>₂(CF₂)₃CH₂-, 2F), -125.15 (s, CF₃C<u>F</u>₂(CF₂)₄CH₂-); *impurity*: -63.78(m, CF₂I, 2F), -112.59(m, -C<u>F</u>₂CF ₂I, -120.08 (m, -(CF₂)₂I, 2F).

Figure S13: ¹³C-NMR spectrum of C₆F₁₃CH₂CHICH₂O(CH₂CH₂O)_{9.5}CH₃

¹³C NMR (101 MHz, CDCl3 capillary, 25°C) δ = 76.05 (s, -CHI<u>C</u>H₂O-, 1C), 71.85 (s, -<u>C</u>H₂OMe, 1C), 70.47 (s, -O<u>C</u>H₂-, 19 X 1C), 70.40 (s, -O<u>C</u>H₂CH₂OMe), 58.92 (s, -O<u>C</u>H₃, 1C), 14.39 (s, -CH₂<u>C</u>HICH₂O-, 1C), 37.34 (t, ²J_{CF} = 20.83 Hz,-CF₂<u>C</u>H₂CHI-, 1C), Impurities: 134.67 (s, 1C, –CH=), 117.05 (s, 1C, =CH₂), 70.60 (s, 1C, <u>C</u>H₂-allyl). (A)

Figure S14. Gas Chromatography/mass spectrometry of the reaction of $C_6F_{13}I$ with BPO. (A) Chromatograpy of products, (B) Mass Spectrum of $C_6F_{13}PhI$ where 126, 253, and 522 m/z are PhCF₂+, IPhCF₂+, and $C_6F_{13}PhI$, respectively.

Figure S15: Electron Impact (EI) Quadrople Mass Spectrum of 1-iodo-2oligo(hexafluoropropylene oxide)perfluoropropane (F[CF(CF₃)CF₂O]_{8.9}CF(CF₃)CF₂I).

335 m/z = $CF_3CF_2CF_2OCF(CF_3)CF_2+$

 $277 \text{ m/z} = +CF(CF_3)CF_2I$

 $169 \text{ m/z/= } CF_3 CF_2 CF_2 +$

69 m/z = CF_3 +

Figure S16: Electron Impact (EI) Quadrople Mass Spectrum of F[CF(CF₃)CF₂O]_{8.9}CFCF₃CF₂CH₂CHICH₂OH.

 $31m/z = +CH_2OH; 207 m/z = +CF(CF_3)CF_2CH_2CHICH_2OH -HI$

(TBPPI): ¹H NMR (400 MHz, C_6D_6 capillary, 25°C): δ = 4.4 (s, -CH₂C<u>H</u>ICH₂OH, 1H), 4.21(s,-CH₂O<u>H</u>, 1H), 3.81 (-CH₂CHIC<u>H₂OH,2H)</u>, 2.98 (m, -CF₂C<u>H_aH_bCHI-, 1H)</u>, 2.72 (m, -CF₂CH_a<u>H_bCHI-, 1H)</u>.

Figure S18: ¹H-NMR spectrum of F[CF(CF₃)CF₂O]_{8.9}CF(CF₃)CF₂CH₂CHICH₂OH initiated by AIBN.

(AIBN): ¹H NMR (400 MHz, C_6D_6 capillary, 25°C): δ = 4.31, 4.25 (s, -CH₂C<u>H</u>ICH₂OH, 1H), 3.99(s,-CH₂O<u>H</u>, 1H), 3.66 (-CH₂CHIC<u>H₂OH, 2H), 2.84 (m, -CF₂CH_aH_bCHI-, 1H), 2.54 (m, -CF₂CH_aH_bCHI-, 1H).</u>

¹⁹F NMR (376.41 MHz, C₆D₆, 25°C): δ = -59.68, -60.64(s, -CF_aF_bI, ²J_{FF} =212.25 Hz, 2F), -79.15 (d, -CF(C<u>F₃</u>)CF₂I, ³J_{FF} = 51.63Hz, 3F), -79 to -84 (-[CF(C<u>F₃</u>)C<u>F₂O]-</u>), -82.54 (CF₃CF₂C<u>F₂O-, 2F), -84.25 (s, CF₃CF₂CF₂O-, 3F), -132.21 (s, CF₃C<u>F₂CF₂-, 2F), -135.51(s, -CF(CF₃)CF₂I, 1F), -146.72 (m, -[C<u>F</u>(CF₃)CF₂O]-, 8.9 x 1F).</u></u>

Figure S20: ¹⁹F-NMR spectrum of F[CF(CF₃)CF₂O]_{8.9}CF(CF₃)CF₂CH₂CHICH₂OH initiated by TBPPI.

¹⁹F NMR (376.41 MHz, C₆D₆, 25°C): δ = -80 to -85 (m, CF(C<u>F</u>₃)C<u>F</u>₂O-), -80.15 (s, C<u>F</u>₃CF₂CF₂O-, 3F), -81.80 (s, CF₃CF₂C<u>F</u>₂O-, 2F), -110.92 (²J_{FF} = 262.73Hz), -112.54 (²J_{FF} = 237.49Hz), -113.99 (²J_{FF} = 261.58Hz), -129.80 (s, CF₃C<u>F</u>₂CF₂-, 2F), -146.80 (m, -C<u>F</u>(CF₃)CF₂-, 8.9 x 1F).

Figure S21: ¹³C-NMR spectrum of F[CF(CF₃)CF₂O]_{8.9}CF(CF₃)CF₂CH₂CHICH₂OH initiated by TBPPI.

¹³C NMR (101 MHz, DMSO/C₆D₆ capillary, 25°C) δ = 118.0 (qd, ¹J_{CF} =290.9, ²J_{CF} = 28.2 Hz – OCF(<u>C</u>F3)CF2-), 117.6 (qt, ¹J_{CF} = 286.15 Hz, ²J_{CF} = 32.93 Hz, <u>C</u>F₃CF₂CF₂O-, 1C), 117.5 (qd, ¹J_{CF} = 286.15, ²J_{CF} = 34.40 Hz, CF₃CF₂<u>C</u>F₂O, 1C), 114.7 (td, ¹J_{CF} = 285.74, ²J_{CF} = 31.26Hz, -OCF(CF₃)<u>C</u>F₂-, 8.9 x 1C), 105.2 (tsext, ¹J_{CF} = 267.03 Hz, ²J_{CF} = 36.68 Hz, CF₃<u>C</u>F₂CF₂O-, 1C), 101.8(dsext, ¹J_{CF} = 270.7, ²J_{CF} = 36.7 Hz, $-O\underline{C}F(CF_3)CF_2$ -), 66.32 (s, $-CH_2CHI\underline{C}H_2OH$, 1C), 36.52(m, $-CF_2\underline{C}H_2CHICH_2OH$, 1C), 18.09, 17.90(s, $-CH_2\underline{C}HICH_2OH$, 1C).

oxide)perfluoropropane(F[CF(CF₃)CF₂O]_{8.9}CF(CF₃)CF₂I).

¹³C NMR (101 MHz, C_6D_6 capillary, 25°C): $\delta = 117.3$ (qd, ${}^{1}J_{CF} = 288.3$ Hz, ${}^{2}J_{CF} = 30.7$ Hz – OCF($\underline{C}F_3$)CF₂-, 8.9 x 1C), 116.86 (qt, ${}^{1}J_{CF} = 286.15$ Hz, ${}^{2}J_{CF} = 32.93$ Hz, $\underline{C}F_3CF_2CF_2O$ -, 1C), 116.2(qd, ${}^{1}J_{CF} = 285.4$ Hz, ${}^{2}J_{CF} = 30.0$ Hz, $-OCF(\underline{C}F_3)CF_2I$, 1C), 115.8 (td, ${}^{1}J_{CF} = 287.6$, ${}^{2}J_{CF} = 28.5$ Hz, $-OCF(CF_3)\underline{C}F_2O$ -, 8.9 x 1C), 115.35 (qd, ${}^{1}J_{CF} = 286.15$, ${}^{2}J_{CF} = 34.40$ Hz, CF₃CF₂ $\underline{C}F_2O$, 1C), 106.3 (tsex, ${}^{1}J_{CF} = 270.1$, ${}^{2}J_{CF} = 40.83$ Hz, CF₃ $\underline{C}F_2CF_2O$ -, 1C), 102.75 (dsext, ${}^{1}J_{CF} = 269.3$, ${}^{2}J_{CF} = 37.3$ Hz, $-O\underline{C}F(CF_3)CF_2$ -), 102.65 (dsext, ${}^{1}J_{CF} = 270.78$, ${}^{2}J_{CF} = 39.52$ Hz, $-O\underline{C}F(CF_3)CF_2I$, 1C), 91.5 (td, ${}^{1}J_{CF} = 319.95$ Hz, ${}^{2}J_{CF} = 33.93$ Hz, $-OC*F(CF_3)\underline{C}F_2I$), 91.3 (td, ${}^{1}J_{CF} = 320.71$ Hz, ${}^{2}J_{CF} = 36.41$ Hz, $-OC*F(CF_3)\underline{C}F_2I$).

A)

B)

Figure S23: Negative Mode, Atmospheric pressure Solids Analysis Probe (ASAP) mass spectrum (MS) of 1-iodo-2-oligo(hexafluoropropylene oxide) perfluoropropane
(F[CF(CF₃)CF₂O]_{8.9}CF(CF₃)CF₂I). The expansion (Figure B) is the minor distribution of heavier homologues of oligo(HFPO) iodide centered around 2982 m/z (average n = 16).

Figure S24: Matrix assisted laser desorption ionization-time-of-flight mass spectrum (MALDI-TOF-MS) of 1-iodo-2-oligo(hexafluoropropylene oxide) perfluoropropane (F[CF(CF₃)CF₂O]_{8.9}-CF(CF₃)CF₂I).

Figure S25: Atmospheric pressure Solids Analysis Probe (ASAP) *Mass Spectrum (MS)* of F[CF(CF₃)CF₂O]_{8.9}CF(CF₃)CF₂CH₂CHICH₂OH initiated by TBPPI.

Figure S26. Matrix assisted laser desorption ionization (Positive ion mode)-time of flightmass spectrum of F[C(CF₃)CF₂O]_{8.9}CF(CF₃)CF₂CH₂CHICH₂OH (using as matrix trans-2-[3-(4-tertbutylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB) and LiCl as the cationizing agent).

Figure S27: ¹H-NMR spectrum of the reaction of 1-iodo-2-oligo(hexafluoropropylene oxide)perfluoropropane(F[CF(CF₃)CF₂O]_{8.9}CF(CF₃)CF₂I)with benzoyl peroxide initiated by BPO.

Figure S28: ¹H-NMR spectrum of F[CF(CF₃)CF₂O]_{8.9}CF(CF₃)CF₂CH₂CH₂CH₂O(CH₂CH₂O)_{8.5}CH₃ initiated by AIBN.

1H NMR (400 MHz, CDCl₃ capillary, 25 °C): δ = 4.36 (b, -C<u>H</u>I-, 1H), 3.79 (b, -CHIC<u>H</u>₂O, 2H), 3.59 (b, -C<u>H</u>₂O, 19 x 1H), 3.46 (b, -C<u>H</u>₂C<u>H</u>₂OCH₃, 4H), 3.28 (s, C<u>H</u>₃O-, 3H), 3.09 (vb, -CF₂C<u>H</u>₃H_bCHI-, 1H), 2.58 (vb CF₂CH₃<u>H</u>_bCHI-, 1H).

¹⁹F NMR (376.41 MHz, C₆D₆, 25°C): δ = -80 to -84 (CF(C<u>F</u>₃)C<u>F</u>₂O-), -84.04 (C<u>F</u>₃CF₂CF₂O-, 3F), -82.37 (CF₃CF₂C<u>F</u>₂O-, 2F), -112 to -117.5 (b, -CF(CF3)C<u>F</u>₂CH₂CHI-, 2F), -132.03 (s, CF₃C<u>F</u>₂CF₂-, 2F), -146.54 (m, -C<u>F</u>(CF₃)CF₂-, 8.9 x 1F).

Figure S30: ¹³C-NMR spectrum of F[CF(CF₃)CF₂O]_{8.9}CF(CF₃)CF₂CH₂CH₂CH₂O(CH₂CH₂O)_{9.5}CH₃ initiated by AIBN.

¹³C NMR (101 MHz, C₆D₆, 25°C) δ = 118.0 (qd, ¹J_{CF} = 290.9, ²J_{CF} = 28.2 Hz –OCF(<u>C</u>F3)CF2-), 117.6 (qt, ¹J_{CF} = 286.15 Hz, ²J_{CF} = 32.93 Hz, <u>C</u>F₃CF₂CF₂O-, 1C), 117.5 (qd, ¹J_{CF} = 286.15, ²J_{CF} = 34.40 Hz, CF₃CF₂<u>C</u>F₂O, 1C), 114.7 (td, ¹J_{CF} = 285.74, ²J_{CF} = 31.26Hz, OCF(CF₃)<u>C</u>F₂-, 8.9 x 1C), 105.2 (tsext, ¹J_{CF} = 267.03 Hz, ²J_{CF} = 36.68 Hz, CF₃<u>C</u>F₂CF₂O-, 1C), 101.8 (dsext, ¹J_{CF} = 270.7, ²J_{CF} = 36.7 Hz, – O<u>C</u>F(CF₃)CF₂-), 76.27 (s, -CH₂CHI<u>C</u>H₂O-, 1C), 72.17 (s, <u>C</u>H₂-CH₂-OMe, 2C), 70.79 (s, 19 X 1C, - <u>C</u>H₂-O), 70.54 (s, -CH₂<u>C</u>H₂OMe, 1C) 58.65 (s, 1C, <u>C</u>H₃), 37.65(m, -CF₂<u>C</u>H₂CHICH₂O-, 1C), 14.30(s, - CH₂<u>C</u>HICH₂O-, 1C).

Figure S31: Atmospheric pressure Solids Analysis Probe (ASAP) Mass Spectrum (MS) of F[CF(CF₃)CF₂O]_{8.9}CF(CF₃)CF₂CH₂CHICH₂O(CH₂CH₂O)_{9.5}CH₃ initiated by BPO.

Figure S32: Matrix assisted laser desorption ionization-time-of-flight mass spectrum (MALDI-TOF-MS) of $F[CF(CF_3)CF_2O]_{8.9}CF(CF_3)CF_2CH_2CHICH_2O(CH_2CH_2O)_{9.5}CH_3$ initiated by BPO. The adduct (M+Li)⁺ at 1889 is x=7 and y=8. The expansion *m/z* between 1500 and 1900 displays 166 m/z-repeat unit for HFPO [CF(CF_3)CF_2O] and 44 m/z-repeat unit of ethylene oxide (CH_2CH_2O).

Figure S33. Comparison of the 19 F-NMR expansions of the reaction C₆F₁₃I with the initiator (TBPPi, AIBN, BPO) and initiator with allyl alcohol.

Figure S34. Comparison of the 19 F-NMR expansions of the reaction of C₆F₁₃I with the initiator (TBPPi, AIBN, BPO) and initiator with ally-O-PEG-OCH₃.

Figure S35. Comparison of the ¹⁹F-NMR expansions of the reaction of oligo(HFPO)-CF(CF₃)CF₂I with the initiator (TBPPi, AIBN, BPO) and initiator with ally-O-PEG-OCH₃.

Figure S36: ¹³C-NMR spectrum, Attached Proton Test (APT), of 1-iodo-2-methyl-3-[2-(poly(hexafluoro-propylene oxide) perfluoropropyl]-propane. A side reaction of 1-iodo-2oligo(hexafluoropropylene oxide)perfluoropropane (F[CF(CF₃)CF₂O]_{8.9}CF(CF₃)CF₂I) with TBPPI.

¹³C NMR (101 MHz, C₆D₆, 25°C) δ = 47.51 (td, ²J_{CF} = 19.0 Hz, ³JF_{CF} = 8.1 Hz, -CF(CF₃)CF₂CH₂C-(CH₃)₂I, 1C), 36.06 (s, -CF(CF₃)CF₂CH₂C(CH₃)₂I, 2C), 31.98 (s, , -CF(CF₃)CF₂CH₂C(CH₃)I, 1C).

Figure S37: Atmospheric pressure Solids Analysis Probe (ASAP) Mass Spectrum (MS) of 1iodo-2-methyl-3-[2-(poly(hexafluoropropylene oxide)perfluoropropyl]-propane, side reaction of 1-iodo-2-oligo(hexafluoropropylene oxide)perfluoropropane (F[CF(CF₃)CF₂O]_{8.9}CF(CF₃)CF₂I) with TBPPI.

Figure S38: ¹H-NMR spectrum of F[CF(CF₃)CF₂O]_{8.9}CF(CF₃)CF₂CH₂CH₂CH₂O(CH₂CH₂O)_{9.5}CH_{3.}

¹H NMR (400 MHz, CDCl₃ capillary, 25 °C): δ = 3.59 (b, -C<u>H</u>₂O, 23 x 1H), 3.40 (s, C<u>H</u>₃O-, 3H), 2.20 (b, -CF₂C<u>H</u>₂CH₂-, 1H), 1.89 (b, -CF₂CH₂-, 1H).

Figure S39: ¹⁹F-NMR spectrum of F[CF(CF₃)CF₂O]_{8.9}CF(CF₃)CF₂CH₂CH₂CH₂O(CH₂CH₂O)_{9.5}CH_{3.}

¹⁹F NMR (376.41 MHz, C₆D₆, 25°C): δ = -80 to -84 (CF(C<u>F</u>₃)C<u>F</u>₂O-), -84.04 (C<u>F</u>₃CF₂CF₂O-, 3F), -82.37 (CF₃CF₂C<u>F</u>₂O-, 2F), -112 to -118 (b, -CF(CF3)C<u>F</u>₂CH₂CH₂-, 2F), -131.56 (s, CF₃C<u>F</u>₂CF₂-, 2F), -146.05 (m, -C<u>F</u>(CF₃)CF₂-, 9.9 x 1F).

Figure S40: ¹³C-NMR spectrum of F[CF(CF₃)CF₂O]_{8.9}CF(CF₃)CF₂CH₂CH₂CH₂O(CH₂CH₂O)_{9.5}CH₃

¹³C NMR (101 MHz, C₆D₆, 25°C) δ = 118.0 (qd, ¹J_{CF} = 290.9, ²J_{CF} = 28.2 Hz, -OCF(<u>C</u>F3)CF2-), 117.6 (qt, ¹J_{CF} = 286.15 Hz, ²J_{CF} = 32.93 Hz, <u>C</u>F₃CF₂CF₂O-, 1C), 117.5 (qd, ¹J_{CF} = 286.15, ²J_{CF} = 34.40 Hz, CF₃CF₂<u>C</u>F₂O, 1C), 114.7 (td, ¹J_{CF} = 285.74, ²J_{CF} = 31.26Hz, -OCF(CF₃)<u>C</u>F₂-, 8.9 x 1C), 105.2 (tsext, ¹J_{CF} = 267.03 Hz, ²J_{CF} = 36.68 Hz, CF₃<u>C</u>F₂CF₂O-, 1C), 101.8 (dsext, ¹J_{CF} = 270.7, ²J_{CF} = 36.7 Hz, -O<u>C</u>F(CF₃)CF₂-), 69.42 (bs, -CH₂O-, 21 X 1C), 57.59 (s, <u>C</u>H₃,1C), 27.80(m, -CF₂<u>C</u>H₂CH₂CH₂CH₂O-, 1C), 20.55 (s, -CH₂<u>C</u>H₂CH₂O-, 1C). Impurities (tributyI-Sn-X): 28.98 (s, CH₃CH₂<u>C</u>H₂CH₂-Sn, 3C), 26.90 (s, CH₃<u>C</u>H₂CH₂CH₂CH₂-Sn, 3C), 18.76 (t, CH₃CH₂CH₂CH₂-Sn, ¹J_{CSn} = 20.49 Hz, 3C), 12.53 (s, <u>C</u>H₃CH₂CH₂CH₂CH₂CH₂-Sn, 3C)

Figure S41. Positive mode atmospheric pressure solids analysis probe (ASAP) mass spectrum (MS) of oligo(HFPO)-CH₂CH₂-oligo(PEG)

Figure S42. Positive ion mode MALDI-TOF-MS spectrum of $oligo(HFPO)-CH_2CH_2CH_2-oligo(PEG)$ (using as matrix DCTB and LiCl as the cationizing agent), 1807 m/z is x =8 and y = 5. The insert expansion m/z between 1850 and 2100 displays 166 m/z-repeat unit for HFPO [CF(CF₃)CF₂O] and 44 m/z-repeat unit of ethylene oxide (CH₂CH₂O).

Figure S43: Surface Tension measurement of ammonium perfluorooctanoate $(C_7F_{15}C(O)O^-NH_4^+)$, CMC = 3.77 g/L.

Figure S44: Positive mode atmospheric pressure solids analysis probe (ASAP)-time-of-flightmass spectrum (MS) of oligo(HFPO)-CH₂CH₂CH₂OH, in trifluorotoluene.

M1: F[CF(CF₃)CF₂O]_nCF(CF₃)CF₂CH₂CH₂CH₂OH

M2: F[CF(CF₃)CF₂O]_nCF(CF₃)CF₂CH₂CH₂CH₂CH₂OH

Figure S45: Negative ion mode MALDI-TOF-MS spectrum of oligo(HFPO)CH₂CH₂CH₂OH, in trifluorotoluene (using as matrix DCTB and LiCl as the cationizing agent).