Supplementary Information for

Novel Vanillic Acid-based Poly(ether-ester)s: From Synthesis to

Properties

Chengcai Pang^a, Jie Zhang^a, Qiufen Zhang^a, Guolin Wu^{a,b},* Yinong Wang^a, Jianbiao Ma^c*

^a Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, P R China

^b Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China
^c School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin
300191, P R China

Corresponding author: guolinwu@nankai.edu.cn; Fax: +86 22 23502749; Tel: +86 22 23507746

Figure S1. ¹H NMR spectra of DVA

Figure S2. ¹H NMR spectra of vanillic acid

Figure S3. ¹H NMR spectra of IIDVA

Figure S4. SEC traces of selected synthesized poly(ether-ester)s: (a) PE1-4, (b) PE2-4, (c) PE1-10, (d) PE2-10

Figure S5. TGA curves of PE1-4, PE1-10 and PE2-10 under air at a heating rate of 10 °C min⁻¹.

Table S1. Thermal properties of the poly(ether-ester)s measured by TGA in air

polymer	$T_{5\%}^{a}(^{\circ}\mathrm{C})$	W ^b (%)		
PE1-4	330	3.7		
PE1-10	341	2.2		
PE2-10	351	3.9		
^a Temperature at which 5% weight loss was observed. ^b Remaining weight at 700 °C.				

Figure S6. Tan δ as a function of temperature for PEs 5–7

Table S2. Dynamic mechanical properties of PEs 5-7					
Polymer	$T_{\rm g}$ (°C)	<i>E'</i> (20 °C) (MPa)	$ an \delta_{ m max}$		
PE5	-2.1	283	0.15		
PE6	15.6	581	0.20		
PE7	5.3	493	0.17		

Scheme S1. Structures of PEs 5-7 from monomers derived from vanillic acid and 10undecenoic acid.

Figure S7. Stress-strain curves of PEs 5-7 at 25 °C, 0.05 mm s⁻¹

Polymer	Young's	Ultimate strength	Strain at
	modulus (MPa)	(MPa)	break (%)
PE5	50.0 ± 5.1	4.1 ± 0.9	22.8 ± 5.9
PE6	99.7 ± 11.5	5.0 ± 1.1	12.7 ± 3.1
PE7	66.2 ± 13.4	7.0 ± 1.4	43.7 ± 8.2

Table S3. Tensile properties of PEs 5–7