Title: "Click" Head Functionalization of Giant Surfactants

Thiol-Michael "Click" Chemistry: Another Efficient Tool for Head Functionalization of Giant Surfactants

Yiwen Li,^{1,†} Hao Su,^{1,†} Xueyan Feng,¹ Zhao Wang,¹ Kai Guo,¹ Chrys Wesdemiotis,^{1, 2} Qiang Fu,³

Stephen Z. D. Cheng,^{1,*} and Wen-Bin Zhang^{1,4,*}

- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, U.S.A.
- 2. Department of Chemistry, The University of Akron. Akron, Ohio 44325-3601, U.S.A.
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Department of Polymer Science and Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing 100871, China

E-mail: wenbin@pku.edu.cn (W.-B. Z.); Fax: + 86 10 6275 1708; Tel: +86 10 6275 2394; scheng@uakron.edu (S. Z. D. C.); Fax: +1 330 972 8626; Tel: +1 330 972 6931

[†] These authors contribute equally to this work.

Fig. S1 ¹H NMR (a) and ¹³C NMR (b) spectrum of ACPOSS-alkyne.

Fig. S2 FTIR spectra of (a) PS_{48} -N₃ (black curve), (b) ACPOSS-PS₄₈ (red curve), and (c) HPOSS-PS₄₈-TM (blue curve).

Fig. S3 ¹³C NMR spectra of (a) ACPOSS-PS₄₈, (b) HPOSS-PS₄₈-TM, (c) FPOSS-PS₄₈-TM, (d) SPOSS-PS₄₈-TM, and (e) NPOSS-PS₄₈-TM.

Fig. S4 ¹H NMR spectra of HPOSS-PS₇₆-TM crude product (a), and HPOSS-PS₇₆-TE crude product (b).

Fig. S5 ¹H NMR spectra of HPOSS-PS₁₇₆-TM crude product (a), and HPOSS-PS₁₇₆-TE crude product (b).

Fig. S6 ¹H NMR spectrum of HPOSS-PS₄₈-TE crude product.

Fig. S7 ¹H NMR spectra of FPOSS-PS₇₆-TM crude product (a), and FPOSS-PS₇₆-TE crude product (b).

Fig. S8 ¹H NMR spectra of FPOSS-PS₁₇₆-TM crude product (a), and FPOSS-PS₁₇₆-TE crude product (b).

Fig. S9 ¹H NMR spectrum of FPOSS-PS₄₈-TE crude product.

Fig. S10 ¹H NMR spectra of SPOSS-PS₇₆-TM crude product (a), and SPOSS-PS₇₆-TE crude product (b).

Fig. S11 ¹H NMR spectra of SPOSS-PS₁₇₆-TM crude product (a), and SPOSS-PS₁₇₆-TE crude product (b).

Fig. S12 ¹H NMR spectra of NPOSS-PS₇₆-TM crude product (a), and NPOSS-PS₇₆-TE crude product (b).

Fig. S13 ¹H NMR spectra of NPOSS-PS₁₇₆-TM crude product (a), and NPOSS-PS₁₇₆-TE crude product (b).

Fig. S14 FTIR spectra of (a) FPOSS-PS₄₈-TM (black curve), (b) SPOSS-PS₄₈-TM (red curve), and (c) NPOSS-PS₄₈-TM (blue curve)

Fig. S15 ¹H NMR spectrum of SPOSS-PS₄₈-TE crude product.

Fig. S16 ¹H NMR spectrum of NPOSS-PS₄₈-TE crude product.