Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2014

A fluorescent supramolecular polymer with aggregation induced emission (AIE)

properties formed by crown ether-based host-guest interactions

Dong Chen,^{*a*} Jiayi Zhan,^{*a*} Mingming Zhang,^{*b*} Jing Zhang,^{*a*} Jiaju Tao,^{*a*} Danting Tang,^{*a*} Ailin Shen,^{*a*} Huayu Qiu^{*a*} and Shouchun Yin*^{*a*}

^aCollege of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, P. R. China

Fax: +86 57128867899; Tel: +86 57128867899

E-mail: yinsc@hznu.edu.cn;

^bDepartment of Biochemistry and Chemistry, University of Maryland, College Park, 20740, US

Supporting Information (9 pages)

1.	Material and methods	S2
2.	Synthesis of compound 1	S2
	2.1 Synthesis of compound 5	S3
	2.2 Synthesis of monomer 1	S4
3.	The conversion between supramolecular polymer and monomers	S 8
4.	Fluorescence spectra of monomer 1 and the linear supramolecular polymer	S9
Rę	Reference	

1. Materials and methods

Compounds 3^{S1} , 4^{S2} and 6^{S3} were synthesized according to the published procedure. 1D (¹H, ¹³C) and 2D (1H-1H-NOESY, COSY, DOSY) nuclear magnetic resonance (NMR) spectra were recorded at room temperature on a Bruker Avance 500 operating at a frequency of 500 MHz for ¹H and 125 MHz for ¹³C. Mass spectra were recorded on a Hewlett-Packard 5989 A mass spectrometer (ESI mode). High-resolution mass data were obtained with a Agilent Technologies 6530 Accurat-Mass Q-TOF LC/MC instrument. Viscosity measurements were carried out with Ubbelohde dilution viscometers (Julabo Technology Corporation visco-170, 0.47 mm inner diameter) in CHCl₃/CH₃CN (1/1, v/v) containing 0.05 mol/L tetrabutylammonium hexafluorophosphate to exclude the polyelectrolyte effect. Scanning electron microscopy (SEM) investigations were carried out on a Carl Zeiss Jena supra55 sapphire instrument. Fluorescent confocal images were recorded on a Zeiss LSM 710 confocal fluorescence microscopy. The fluorescence spectra were recorded on a HITACHI F7000 fluorescence spectrophotometer. The samples for solid-state fluorescence measurements were prepared as follows. A linear supramolecular polymer solution (90 mM in CHCl₃/CH₃CN) was first prepared. Then different metal ions (100 µM in CHCl₃/CH₃CN, 2 µL) were added into linear supramolecular polymer solution (20 µL). After stirring for 10 min, 2 µL of the mixture solution was drop-coated on quart slides to dry.

2. Synthesis of compound 1

Scheme S1 Synthetic routes of monomer 1.

2.1. Synthesis of compound 5

3 (364 mg, 1.00 mmol), **4** (917 mg, 2.50 mmol) and K₂CO₃ (3.40 g, 25.0 mmol) in acetonitrile (100 mL) were refluxed for 24 h. After filtration, the solvent was removed with a rotary evaporator and the residue was extracted with H₂O/CH₂Cl₂. The organic phase was collected, combined, dried over anhydrous Na₂SO₄ and then the solvent was removed to give a crude product, which was further purified by flash column chromatography (1:2 dichloromethane/hexane, v/v) to afford **5** as a pale yellow liquid (475 mg, 63.0%). ¹H NMR (500 MHz, CDCl₃, 293K) δ (ppm): 7.02–7.18 (m, 10H), 6.90–7.00 (m, 4H), 6.61–6.71 (m, 4H), 3.85–3.95 (m, 4H), 3.29 (t, *J* = 7.0 Hz, 4H), 1.72–1.84 (m, 4H), 1.58-1.68 (m, 4H), 1.28–1.44 (m, 28H). HRMS [M+H]⁺: calcd. for C₄₈H₆₃N₆O₂ 755.5139, found 755.5007.

Fig. S1 ¹H NMR spectrum (500 MHz, CDCl₃, 293K) of compound 5.

Fig. S2 HRMS spectrum of compound 5.

2.2. Synthesis of compound 1

A mixture of **5** (755 mg, 1.00 mmol), **6** (1.29 g, 2.50 mmol), CuI (760 mg, 0.40 mmol), DIEA (103 mg, 0.80 mmol) in DCE/H₂O (1:1, 100 mL) was stirred at 50°C for 24 h. The solvent was removed with a rotary evaporator and the residue was extracted with H_2O/CH_2Cl_2 . The combined organic phase was concentrated and purified by flash column chromatography (first ethyl acetate, then 4:1

dichloromethane/MeOH, v/v) to afford the desired product as a solid (1.05 g, 59%). ¹H NMR spectrum (500 MHz, 1:1 CDCl₃/CD₃CN, 293K) δ (ppm): 7.52 (s, 2H), 7.00–7.12 (m, 10H), 6.79–6. 96 (m, 18H), 6.59-6.68 (m, 4H), 4.63 (s, 4H), 4.50 (s, 4H), 4.31 (t, J = 7.2 Hz, 4H), 4.14 (d, J = 5.0 Hz, 16H), 3.90 (d, J = 5.0 Hz, 16H), 3.83 (m, 20H), 1.91–1.84 (m, 4H), 1.75-1.64 (m, 4H), 1.46–1.13 (m, 28H). ¹³C NMR (125 MHz, 1:1 CDCl₃/CD₃CN, 293K) δ (ppm): 157.6, 157.6, 149.04, 148.9, 148.5, 144.3, 144.2, 139.8, 132.3, 132.2, 131.4, 131.2, 131.1, 127.7, 127.6, 126.2, 121.4, 121.0, 117.0, 114.4, 114.1, 114.0, 113.7, 113.6, 71.8, 70.8, 69.7, 69.7, 69.2, 69.1, 67.8, 63.2, 50.0, 30.1, 29.3, 29.3, 29.2, 29.2, 28.8, 26.3, 25.9, 25.9. ESI–MS: m/z 1809.47 [M+Na]⁺. HRMS [M+H]⁺: calcd. for C₁₀₄H₁₃₅N₆O₂₀ 1787.9726, found 1787.9987.

Fig. S3 ¹H NMR spectrum (500 MHz, 1:1 CDCl₃/CD₃CN, 293K) of compound 1.

Fig. S4 ¹³C NMR spectrum (125 MHz, 1:1 CDCl₃/CD₃CN, 293K) of compound 1.

Fig. S5 Electrospray ionization mass spectrum of compound 1.

Fig. S6 HRMS spectrum of compound 1.

Fig. S7 Partial 2D H-H COSY spectrum (500MHz, 1:1 CDCl₃/CD₃CN, 293K) of compound **1** in the downfield region.

Fig. S8 Partial 2D H-H COSY spectrum (500MHz, 1:1 CDCl₃/CD₃CN, 293K) of monomer **1** in the upfield region.

3. The conversion between supramolecular polymer and monomers

Fig. S9 Partial ¹H NMR spectra (500MHz, 1:1 CDCl₃/CD₃CN, 293K) of (a) 1:1 mixture of **1** and **2** at the concentration of 90 mM; (b) treating the mixture with 1.5 equiv. of Et₃N to (a); (c) subsequent addition of 3.5 equiv. of TFA to (b).

4. Fluorescence spectra of monomer 1 and the linear supramolecular polymer

Fig. S10 Fluorescence spectra of monomer **1** (200 mM) and the linear supramolecular polymer in 1:1 CH₃CN/CHCl₃ (200 mM) and in the solid state.

References:

- S1. H. Tong, Y. Hong, Y. Dong, M. Haeussler, J. W. Y. Lam, Z. Li, Z. Guo and B. Z. Tang, Chem. Commun. 2006, 3705.
- S2. H. Li, A. C. Fahrenbach, S. K. Dey, S. Basu, A. Trabolsi, Z. Zhu, Y. Y. Botros and J. F. Stoddart, *Angew. Chem., Int. Ed.* 2010, 49, 8260.
- S3. Y. Koyama, Y. Suzuki, T. Asakawa, N. Kihara, K. Nakazono and T. Takata, *Polym. J.* 2012, 44, 30.