Electronic Supplementary Information (ESI)

Novel biocompatible fluorescent polymeric micelles based on 1,8naphthalimide derivatives for cell imaging

Bei-Yu Liu, Wan-Xia Wu, Na Wang*, and Xiao-Qi Yu*

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China

Contents

1.	Materials and Measurement	
4.	References	S20
	Fig. S22 ~ S28	S17 ~ S20
	NMR of various compounds	S11 ~ S16
	Fig. S1 ~ S9 & Table S1	S7 ~ S10
3.	Results	
	Cell culture and imaging	$S6 \sim S7$
	Synthesis of C2/C4/P2	S5 ~ S6
	Preparation of fluorescent polymeric micelles P1	$S4 \sim S5$
	Synthesis of C1/C3	$S3 \sim S4$
2.	Synthesis of various compound	
1.	Materials and Measurements	$S2 \sim S3$

* Correspondence to: Fax./ Tel: + 86 28 85415886

N. Wang (E-mail: wnchem@scu.edu.cn) , X.-Q. Yu (E-mail: xqyu@scu.edu.cn)

N-(2-hydroxyethyl) piperazine (98%), CuBr (99%), and *N*, *N'*, *N''*, *N''*, *N'''*-pentamethyldietylenetriamine (PMDETA, 99%) were purchased from Aladdin reagent (Shanghai, China), 4-piperidineethanol (96%) was purchased from J & K Scientific respectively, and used as received. Dichloromethane (DCM) and Dimethylformamide (DMF), tetrahydrofuran (THF) were dried and distilled first with purification. Ultra-pure water was used in the experiments. All other agents and solvents were purchased from commercial sources and used directly without further purification. Methoxy-poly(ethylene glycol)-azide (\mathbf{mPEG}_{2000} - \mathbf{N}_3)¹ and 6-nitro-2-(prop-2-yn-1-yl)-1*H*-benzo[de]-isoquinoline-1,3(2*H*)-dione (1)² were synthesized according to literature reported so as the preparation of stearoyl chloride³.

¹H NMR and ¹³C NMR spectra were obtained on a Bruker DMX400 Spectrometer in CDCl₃ and given in relative to internals reference TMS standard. HRMS spectral data were measured on a Bruker Daltonics Bio TOF mass spectrometer. Gel permeation chromatography (GPC) to comfirm the polymer molecular weights and their distributions was carried out on a Waters HPLC system equipped with a model 1515 isocratic pump, a 717 plus autosampler, and a 2424 refractive index (RI) detector with Waters Styragel® HT3 and HT4 columns in series. The eluting solvent was THF at a flow rate of 1.0mL/min at 45°C. The retention times were calibrated against poly (ethylene glycol) standard with the molecular weight range 600 - 80000 Da. Transmission electrom microscopy (TEM, Hitachi H-600) at an acceleration voltage of 100kV was performed to investigate the micelle morphology. The samples were prepared by dropping 2 mg/mL and 1.25 mg/mL of micellar solution of P1 and P2 onto a copper grid followed by negatively staining with a 1 wt% aqueous solution of phosphotungstic acid, respectively. The size of the micelles was determined using dynamic light scattering (DLS) with the micellar solutions (1.25 mg mL⁻¹) filtered through a 0.45 µm syringe filter prior to measurement. The measurements were carried out at 25 °C using a Zetasizer Nano-ZS90 system from Malvern Instruments equipped with a 633 nm He-Ne laser using backscattering detection with a fixed detector angle of 90°. The critical micelle concentration (CMC) was determined via fluorescence spectrometer. Fluorescence emission spectra were recorded on a FluoroMax-4 Spectrofluorophotometer (HORIBA Jobin Yvon) at 298 K. Absorption spectra were recorded on a Hitachi PharmaSpec UV-1900UV-Visible Spectrophotometer. MTT method was used for testing the cell viability and described in the experimental section (Cell culture and imaging, S6). HeLa cells were obtained from Shanghai Institute of Biochemistry and Cell Biochemistry and Cell Biology, Chinese Academy of Science. To confirm that the micelles did not hydrolyze in water, P1 in PBS buffer solution (pH 7.40 or 4.00) were placed in incubator shaker under 37 °C for 30 minutes or 6 hours and then lyophilized respectively. These samples were tested by NMR and GPC measurement as shown in Fig. S23 and Fig. S22. **P1** also dissolved in NaOH aqueous solution, after refluxing under 80 °C for 1h, the GPC profiles in Fig. S22 obtained the trace of the 1,8-naphthalimide derivatives fragments (f-alkaline degradation). The synthesis of **P1** and **P2** were also confirmed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) as shown in Fig. S24 and Fig. S25. α -Cyano-4-hydroxycinnamic acid was used as the matrix for MALDI-TOF MS measurements. The matrix was prepared at a concentration of 10 mg mL⁻¹.

2. Synthesis of various compound

2.1 Synthesis of the fluorophore

2.1.1:6-(4-(hydroxyenthl)piperazin-1-yl)-2(prop-2-yn-1-yl)-1H-benzo[de]isoquinoline-1,3(2H)

-dione (C1)

1 (1 mmol) was dissolved in dry DMF (3 mL), then the solution of N-(2-hydroxyethyl) piperazine (1.2 mmol, 1 mL DMF) was poured into above solution while stirring at room tempearature. After 24 h, DMF was removed by rotary evaporators. The crude product was then puried on silica gel column using methanol / dichloromethane (v / v = 20 : 1) as eluent. The raw product was yellow powder and about 255 mg in 70% yield with a loss in the process of purification.

¹**H NMR (400MHz, CDCl₃, \delta):** 8.62 (dd, $J_1 = 6.4$ Hz, $J_2=1$ Hz, 1H, Ar-H), 8.56 (d, J = 8 Hz, 1H, Ar-H), 8.43 (dd, $J_1 = 7.6$ Hz, $J_2 = 0.8$ Hz, 1H, Ar-H), 7.70 (m, 1H, Ar-H), 7.23 (d, J = 8 Hz, 1H, Ar-H), 4.95 (d, J = 2.4 Hz, 2H, NCH₂), 3.72 (t, J = 5.4 Hz, 2H, CH₂OH), 3.33 (m, 4H, piperazin), 2.88 (m, 4H, piperazin), 2.72 (t, J = 5.4 Hz, 2H, piperazin-CH₂), 2.17 (t, J = 2.6 Hz, 1H, C \equiv CH).

¹³C NMR (100MHz, CDCl₃, δ): 163.7, 163.2, 156.2, 133.0, 131.5, 130.6, 130.0, 126.2, 125.7, 123.0, 116.4, 115.0, 78.8, 70.3, 59.3, 57.8, 53.1, 53.0, 29.3.

HRMS (ESI): Calcd for [M+H]⁺, 364.1661; Found, 364.1662.

2.1.2:2-(4-(1,3-dioxo-2-(prop-2-yn-1-yl)-2,3-dihydro-1*H*-benzo[de]isoquinolin-6-yl)piperazin-1-yl)ethyl stearate (C3):

C1 (prepared above) was dissolved in dry DCM, and triethylamine (Et_3N , 1.4 mmol) was added. Then stearoyl chloride (1.05 mmol) dissolved in dry DCM was added dropwise with an ice bath. After the reaction

stirred at room temperature overnight, the mixture extracted by DCM and washed with saturated brine solution. The organic phase was dried over Na_2SO_4 and concentrated by evaporation. The resultant product was puried by column chromatography on silica gel using petroleum ether / ethyl acetate (v / v=1 : 10). The product was yellow powder and about 370mg in 84% yield with a loss in the process of purification.

¹**H NMR** (400MHz, CDCl3, δ): 8.62 (dd, $J_1 = 6.8$ Hz, $J_2 = 0.8$ Hz, 1H, Ar-H), 8.56 (d, J = 8 Hz, 1H, Ar-H), 8.43 (dd, $J_1 = 7.6$ Hz, $J_2 = 0.8$ Hz, 1H, Ar-H), 7.70 (m, 1H, Ar-H), 7.22 (d, J = 8 Hz, 1H, Ar-H), 4.95 (d, J = 2.4 Hz, 2H, NCH2), 4.29 (t, J = 5.8 Hz, 2H, piperazin-CH₂CH₂), 3.31 (m, 4H, piperazin), 2.85 (m, 4H, piperazin), 2.79 (t, J = 5.8 Hz, 2H, piperazin-CH₂), 2.35 (t, J = 7.6 Hz, 2H, COCH₂), 2.18 (t, J = 2.4 Hz, 1H, C = CH), 1.64 (m, 2H, COCH₂CH₂), 1.24 (m, 28H, C₁₈-(CH₂)₁₄), 0.88 (t, J = 6.8 Hz, 3H, C₁₈-(CH₂)₁₄-CH₃). ¹³C NMR (100MHz, CDCl₃, δ): 173.8, 163.7, 163.2, 156.3, 133.0, 131.5, 130.7, 130.0, 126.2, 125.7, 122.9, 116.2, 115.0, 78.8, 70.3, 61.4, 56.7, 53.4, 53.0, 34.3, 31.9, 29.7-29.2, 25.0, 22.7, 14.1. HRMS (ESI): Calcd for [M+H]⁺, 630.4271; Found, 630.4269.

2.2 Preparation of fluorescent polymeric micelles P1.

2-(4-(2-((1-(2-monomethoxy poly(ethylene glycol)-1H-1,2,3-triazol-4-yl) methyl)-1,3-dioxo-2,3-

dihydro-1H-benzo[de]isoquinolin-6-yl)piperazin-1-yl)ethyl stearate (mPEG-F_{PAZ}-C18, P1):

C3 (0.2 mmol) and mPEG₂₀₀₀-N₃ (0.2 mmol) added in the flask. After replacing the air with argon, 3 mL dry THF was added *via* injection. Subsquently, CuBr (0.08 mmol) and PMDETA (0.08 mmol) put into the reaction mixture. The reaction was carried out at room temperature for 24 h under argon. The final product (bright yellow solid) was obtained after puring by column chromatography on silica gel using DCM / MeOH (v / v = 20 : 1). Yield : 0.52g, 98%. Micelles of P1 was prepared by dialysis method.⁵

¹H NMR (400MHz, CDCl₃, δ): 8.59(dd, J₁ = 6.4 Hz, J₂ = 0.8 Hz, 1H, Ar-H), 8.52 (d, J = 8 Hz, 1H, Ar-H), 8.40 (dd, J₁ = 7.6 Hz, J₂ = 0.8 Hz, 1H, Ar-H), 7.78 (bs, 1H,CH=C- N=N-), 7.68 (m, 1H, Ar-H), 7.20 (d, J = 8 Hz, 1H, Ar-H), 5.49 (s, 2H, NCH₂), 4.47 (t, J = 5.2 Hz, 2H, NCH₂ in mPEG unit), 4.28 (t, J = 5.8 Hz,2H, piperazin-CH₂CH₂), 3.83, 3.65 (m, 174H, methylene in mPEG unit), 3.38 (s, 3H, mPEG-terminal methyl), 3.29 (m, 4H, piperazin), 2.84 (m, 4H, piperazin), 2.78 (t, J = 5.8 Hz, 2H, piperazin-CH₂), 2.34 (t, J = 5.6 Hz, 2H, COCH₂), 1.64 (m, 2H, COCH₂CH₂), 1.25 (m, C₁₈-(CH₂)₁₄), 0.88 (t, J = 6.8 Hz, 3H, C₁₈-(CH₂)₁₄-CH₃).
¹³C NMR (100MHz, CDCl₃, δ): 173.8, 164.1, 163.6, 156.1, 132.8, 131.3, 130.4, 130.0, 126.6, 125.6, 124.2,

123.1, 116.5, 114.9, 71.9, 70.5, 69.5, 61.4, 59.0, 56.7, 53.4, 53.0, 50.1, 35.1, 34.3, 31.9, 29.6-29.1, 25.0, 22.7, 14.1.

2.3 C2, C4 and P2 were synthesized followed the same way as C1, C3 and P1, respectively. 2.3.1:6-(4-(2-hydroxyethyl)piperidin-1-yl)2-(prop-2-yn-1-yl)-1*H*-benzo[*de*]isoquinoline-1,3(2

H)-dione (C2)

¹**H NMR (400MHz, CDCl₃, \delta):** 8.61 (dd, $J_1 = 6.8$ Hz, $J_2=0.4$ Hz, 1H, Ar-H), 8.53 (d, J = 8.4 Hz, 1H, Ar-H), 8.39 (dd, $J_1 = 7.6$ Hz, $J_2 = 0.4$ Hz, 1H, Ar-H), 7.68 (m, 1H, Ar-H), 7.19 (d, J = 8 Hz, 1H, Ar-H), 4.95 (d, J = 2.4 Hz, 2H, NCH₂), 3.81 (t, J = 6.4 Hz, 2H, CH₂OH), 3.62 (d, J = 1.2 Hz, 2H, piperidin), 2.93 (t, J = 11.4 Hz, 2H, piperidin), 2.17 (t, J = 2.2 Hz, 1H, C=CH), 1.95 (d, J = 12.8 Hz, 2H, piperidin), 1.69 (t, J = 6.4 Hz, piperidin-CH₂), 1.64 (m, 2H, piperidin), 1.39 (bs, J = 5.4 Hz, 1H, piperidin).

¹³C NMR (100MHz, CDCl₃, δ): 163.8, 163.2, 157.3, 133.1, 131.4, 131.0, 130.0, 126.3, 125.4, 122.8, 115.6, 114.8, 78.9, 70.2, 60.4, 53.8, 39.3, 32.6, 32.5, 29.3.

HRMS (ESI): Calcd for [M+H]⁺, 363.1709; Found, 363.1705.

2.3.2:2-(1-(1.3-dioxo-2-(prop-2-yn-1-yl)-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)piperidin-

4-yl)-ethyl stearate (C4):

¹**H NMR (400MHz, CDCl₃, δ)**: 8.58 (d, J = 6.8 Hz, 1H, Ar-H), 8.50 (d, J = 8 Hz, 1H, Ar-H), 8.36(d, J = 8.4 Hz, 1H, Ar-H), 7.67 (m, 1H, Ar-H), 7.17 (d, J = 8 Hz, 1H, Ar-H), 4.94 (bs, 2H, NCH₂), 4.21 (t, J = 6.2 Hz, 2H, piperadin-CH₂CH₂), 3.61 (d, J = 11.2 Hz, 2H, piperadin), 2.91 (t, J = 11.2 Hz, 2H, piperadin), 2.33 (d, J = 7.4 Hz, 2H, COCH₂), 2.18 (bs, 1H, C \equiv CH), 1.95 (d, J = 10.4 Hz, 2H, piperadin), 1.74 (t, J = 5.2 Hz, 2H, piperadin-CH₂), 1.65(m, 2H, COCH₂CH₂, 3H, piperadin), 1.25 (m, 28H, C₁₈-(CH₂)₁₄), 0.87 (t, J = 6 Hz, 3H, C₁₈-(CH₂)₁₄-CH₃).

¹³C NMR (100MHz, CDCl₃, δ): 174.0, 163.7, 163.1, 157.1, 133.0, 131.4, 130.9, 129.9, 126.2, 125.4, 122.7, 115.6, 114.8, 78.9, 70.2, 61.9, 53.7, 35.2, 53.0, 34.4, 32.9, 32.4, 31.9, 29.7-29.2, 25.0, 22.7, 14.1.
HRMS (ESI): Calcd for [M+H]⁺, 629.4318; Found, 629.4315.

2.3.3: 2-(1-(2-((1-(2-monomethoxy poly(ethylene glycol)-1H-1,2,3-triazol-4-yl) methyl)-1,3-dioxo-2,3dihydro-1H-benzo[de]isoquinolin-6- yl)piperidin-1-yl)ethyl stearate (mPEG-F_{PID}-C18, P2): ¹**H NMR** (400MHz, CDCl₃, δ): 8.58(d, $J_1 = 6.4$ Hz, 1H, Ar-H), 8.51 (d, J = 8.4 Hz, 1H, Ar-H), 8.37 (d, $J_1 = 8.4$ Hz, 1H, Ar-H), 7.78 (bs, 1H,CH=C- N=N-), 7.67 (m, 1H, Ar-H), 7.18 (d, J = 8 Hz, 1H, Ar-H), 5.49 (s, 2H, NCH₂), 4.47 (t, J = 7.0 Hz, 2H, NCH₂ in mPEG unit), 4.20 (t, J = 6.2 Hz,2H, piperidin-CH₂CH₂), 3.83, 3.65 (m,176, methylene in mPEG unit, piperidin), 3.38 (s, 3H, mPEG-terminal methyl), 2.91 (t, J = 11.2 Hz, 2H, piperidin), 2.33 (t, J = 7.6 Hz, 2H, COCH₂), 1.95 (d, J = 10.0 Hz, 2H, piperidin), 1.73 (t, J = 5.2 Hz, 2H, piperidin-CH₂), 1.64 (m, 5H, COCH₂CH₂, piperidin), 1.25 (m, 28H, C₁₈-(CH₂)₁₄), 0.88 (t, J = 12.8 Hz, 3H, C₁₈-(CH₂)₁₄-CH₃).

¹³C NMR (100MHz, CDCl₃, δ): 173.9, 164.2, 163.7, 156.9, 132.9, 131.3, 130.6, 130.0, 126.3, 125.4, 124.2, 123.0, 116.0, 114.8, 71.9, 70.5, 69.5, 61.9, 59.0, 53.7, 50.1, 35.2, 35.1, 34.4, 32.9, 32.4, 31.9, 29.7-29.2, 25.00, 22.7, 14.1.

2.4 Cell culture and imaging

2.4.1 Cell culture HeLa cells were grown in Dulbecco's modification of Eagle's medium (DMEM) supplemented with 10% (v/v) foetal bovine serum (FBS) and 1% antibiotics (penicillin-streptomycin, 10000 U mL⁻¹). Cells were incubated in a 5% CO₂ humidified incubator at 37 °C, and the medium was replenished every other day.⁴

2.4.2 Cell imaging HeLa cells were pre-washed twice and then incubated with 25 μg mL⁻¹ **P1** and **P2** in PBS at 37 °C for 30 minutes. Then the cells were washed to remove unbounded probes before in situ imaging by inverted fluorescence microscope (Nikon TS100) and LEICA TCS SP8 confocal laser scanning microscopy respectively. As for confocal laser scanning microscopy (CLSM) analysis of HeLa cells upon various pH buffers, HeLa cells were then immersed with 20 mM PBS buffers for about 5 min at different pH values. Finally, images at different pH values were recorded *via* CLSM analysis.

2.4.3 Cytotoxicity assay Toxicity toward HeLa cells was determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-di-phenyltetrazolium bromide) reduction assay following literature procedures.⁴ About 7000 cells per well were seeded in 96-well plates and cultured overnight for 70-80% cell confluence. The medium was replaced with 100 μ L of fresh medium without FBS, to which 100 μ L complexes at 200 μ L. 24 or 48 hours later, 20 μ L of 5 mg mL⁻¹ MTT solution in PBS was added to each well for additional 4h incubation. Blue formazan crystals were seen at well when checked under microscope. The medium was replaced by 150 μ L of DMSO to dissolve the formazan crystal. The absorbance was measured in an ELISA plate reader (model

550, BioRad) at a wavelength of 570 nm. The metabolic activity of the probes treated cells was expressed as a relative to untreated cell controls taken as 100% metabolic activity.

3. Results

Fig. S1 GPC profiles of (a) $mPEG_{2000}$ (Mn = 1980, PDI = 1.04), (b) $mPEG_{2000}$ -N₃ (Mn = 2010, PDI = 1.05), (c) P1 and (d) P2.

Fig. S2 Critical micelle concentration determination: (A) P1 (B) P2. Fluorescence intensity at $\lambda_{em} = 630$ nm of Nile red as function of logarithm of the polymer concentrations in PBS buffer solution (10 mM, pH = 7.40).

Fig. S3 The pH response of P1 based on PET mechanism.

Fig. S4 UV-vis absorption spectra of P1 (A) and P2 (B) in B-R buffer solution.

Fig. S5 Temporal profile of fluorescence intensity of P1 at maximum λ_{em} after adding 3µL HCl solution (1 N) to water, data was recorded every 0.5 s. (B) partial enlarged image.

Fig. S6 Temporal profile of P1 at λ_{535nm} upon pH 7.40 (red) and 4.00 (black) in B-R buffer solution, the fluorescence investigated immediately after adding stock solution of P1 in ultra-pure water, data were recorded every 5 s.

Fig. S7 Fluorescence intensity of P1 upon alternating pH changing between 1.90 and 11.96 at room temperature in water.

Fig. S8 Cell images of HeLa cells recorded on inverted fluorescence microscope of P1 (A, B) and P2 (B, D) (pH = 7.40). (A),

(C) bright field; (B), (D) excited with 405 nm laser.

Fig. S9 Confocal fluorescence images of **P2** in HeLa cells at (A) pH = 7.40, (B) pH = 4.00 and (c) pH = 2.00, respectively (the scale bar represents 20 μ m).

Table S1 Quantum Yied was calculated via fluorescein in 0.1 N NaOH as reference.

Polymer	pH=10.94	pH=7.40	pH=4.00	pH=1.91
P1	0.008	0.01	0.2	0.4
P2	0.01	0.01	0.01	0.01

NMR of various compounds

Fig. S10 ¹H NMR spectrum of C1 in $CDCl_3$

Fig. S11 $^{13}\mathrm{C}$ NMR spectrum of C1 in CDCl3

Fig. S12 ¹H NMR spectrum of C3 in CDCl₃

Fig. S13 ¹³C NMR spectrum of C3 in CDCl₃

Fig. S14 ¹H NMR spectrum of C2 in CDCl₃

Fig. S15 ¹³C NMR spectrum of C2 in CDCl₃

Fig. S16 ¹H NMR spectrum of C4 in CDCl₃

Fig. S17 ¹³C NMR spectrum of C4 in CDCl₃

Fig. S18 ¹H NMR spectrum of P1 in CDCl₃

Fig. S19 ¹³C NMR spectrum of P1 in CDCl₃

Fig. S20 ¹H NMR spectrum of P2 in CDCl₃

Fig. S21 ¹³C NMR spectrum of P2 in CDCl₃

Fig. S22 GPC profiles of (a) **P1** original. (b) **P1** at pH 4.00 for 6 h. (c) **P1** at pH 7.40 for 30 min. (d) **P1** at pH 7.40 for 6h. (e) **P1** at pH 4.00 for 30 min. (f) **P1** after alkaline degradation (NaOH, 80 °C).

Fig. S23 ¹H NMR overlaps of **P1** after different treatment: (1) at pH 4.00 for 30 min; (2) at pH 7.40 for 6 h; (3) at pH 7.40 for 30 min; (4) at pH 4.00 for 6 h; (5) original.

Fig. S24 MALDI mass spectra of P1 (a peak with m/z of 2665 (Na adduct, n=45) was observed).

Fig. S25 MALDI mass spectra of P2 (a peak with m/z of 2644 (K adduct, n=44) was observed).

Fig. S26 Celll viability in the presence of the two probes at different concentrations $(20 \sim 200 \ \mu g \ mL^{-1})$ for 48h. The results were obtained using the MTT assay.

Fig. S27 Fluorescence spectra of **P1** (0.01 mg mL-1) in B-R buffer solution at various pH values (pH=11.91, 10.94, 10.00, 9.00, 8.50, 8.00, 7.40, 7.20, 7.00, 6.80, 6.40, 6.00, 5.80, 5.40, 5.00, 4.70, 4.39, 4.00, 3.74, 3.46, 3.03, 2.80, 2.46, 2.21, 1.91).

Fig. S28 Fluorescence spectra of **P1** (0.005 mg mL-1) in B-R buffer solution at various pH values (pH=11.91, 10.94, 10.00, 9.00, 8.50, 8.00, 7.40, 7.20, 7.00, 6.80, 6.40, 6.00, 5.80, 5.40, 5.00, 4.70, 4.39, 4.00, 3.74, 3.46, 3.03, 2.80, 2.46, 2.21, 1.91).

Reference:

1. C. von der Ehe, K. Kempe, M. Bauer, A. Baumgaertel, M. D. Hager, D. Fischer, and U. S. Schubert,

Macromol. Chem. Phys., 2012, 213, 2146-2156.

2. M. Dong, Y.-W. Wang, and Y. Peng, Org. Lett., 2010, 12, 5310-5313.

3. A. Sarı, C. Alkan, A. Biçer, A. Karaipekli, Sol. Energy Mater. Sol. Cells, 2011, 95, 3195-3201.

4. Q.-F. Zhang, W.-J. Yi, B. Wang, J. Zhang, L. Ren, Q.-M. Chen, L. Guo, and X.-Q. Yu, *Biomaterials*, 2013, **34**, 5391-5401.

5. W.-X. Wu, N. Wang, B.-Y. Liu, Q.-F. Deng, and X.-Q. Yu, Soft Matter, 2014, 10, 1199-1213.