Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2014

Supporting Information for

The effect of solvent in direct arylation polycondensation of substituted thiophenes

Junpei Kuwabara, Kohtaro Yamazaki, Takuya Yamagata, Wataru Tsuchida, Takaki Kanbara

Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), Graduate School of Pure and

Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Japan

Scheme S2

Materials. 2,7-Dibromo-9,9-dioctylfluorene, 3,4-ethylenedioxythiophene, $Pd(OAc)_2$, K_2CO_3 , and other chemicals were received from commercial suppliers and used without further purification. Anhydrous DMAc and toluene were purchased from Kanto Chemical and used as a dry solvent. *N*- (2-ethylhexyl)thieno[3,4-*c*]pyrrole-4,6-dione (TPD),¹ 3,4-dioctyloxythiophene,² 3,4-dimethylthiophene,³ 3,4-dichlorothiophene,⁴ and 3,4-dicyanothiophene⁵ were prepared according to the literature methods.

General Methods. ¹H and ¹³C{¹H} NMR spectra were recorded on Bruker AVANCE-400 and Bruker AVANCE-600 NMR spectrometers. ¹H and ¹³C{¹H} NMR spectra were measured with tetramethylsilane (TMS) as an internal standard. Gel permeation chromatography (GPC) measurements were carried out on a SHIMADZU prominence GPC system equipped with polystyrene gel columns, using CHCl₃ as an eluent after calibration with polystyrene standards. The high temperature GPC measurement on a TOSHO HLC-8121GPC/HT DF-8020 using *o*-dichlorobenzene as eluent at 140 °C after calibration with polystyrene standards. All manipulations for the reactions were carried out under nitrogen atmosphere using a standard Schlenk technique or a glovebox.

Synthesis of poly[(3,4-dioctyloxythiophene-2,5-diyl)-(9,9-dioctylfluorene-2,7-diyl)]. A mixture of Pd(OAc)₂ (2.2 mg, 0.010 mmol), 1-adamantanecarboxylic acid (27 mg, 0.15 mmol), K₂CO₃ (173 mg, 1.25 mmol), 2,7-dibromo-9,9-dioctylfluorene (274 mg, 0.50 mmol), 3,4-dioctyloxythiophene (170 mg, 0.50 mmol) was stirred in anhydrous DMAc (1.7 mL) for 24 h at 100 °C under nitrogen atmosphere. After cooling to room temperature, the mixture was poured into an aqueous solution of ethylenediaminetetraacetic acid disodium salt (pH = 8). The suspension was stirred overnight at room temperature. The precipitate was separated by filtration and washed with 0.1 M HCl solution, distilled water, and CH₃OH. The precipitate was dissolved in CHCl₃ and the solution was filtered through a plug of Celite to remove insoluble material. A reprecipitation from CHCl₃/CH₃OH gave poly[(3,4-dioctyloxythiophene-2,5-diyl)-(9,9-dioctylfluorene-2,7-diyl)] as yellow solid in 98% yield. $M_n = 11 300$, $M_w/M_n = 1.77$. ¹H NMR (600 MHz, CDCl₃): δ 7.85 (s, 2H), 7.72 (overlapped, 4H), 4.10 (br, 4H), 2.07 (br, 4H), 1.79–1.82 (m, 4H), 1.09–1.48 (overlapped, 40H), 0.90 (t, J = 6.6 Hz, 6H), 0.81 (t, J = 7.2 Hz, 6H), 0.72 (br, 4H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 151.4, 146.8, 140.0, 132.1, 125.5, 124.2, 121.0, 119.8, 73.4, 55.3, 40.7, 31.9, 31.9, 30.5, 30.2, 29.6, 29.4, 29.4, 29.3, 26.2, 23.9, 22.7, 22.6, 14.1, 14.1.

Synthesis of poly[(3,4-dicyanothiophene-2,5-diyl)-(9,9-dioctylfluorene-2,7-diyl)]. A mixture of $Pd(OAc)_2$ (1.1 mg, 0.0050 mmol), $PCy_3 \cdot HBF_4$ (1.8 mg, 0.0050 mmol), pivalic acid (8.6 µL, 0.075 mmol), Cs_2CO_3 (163 mg, 0.50 mmol), 2,7-dibromo-9,9-dioctylfluorene (137 mg, 0.25 mmol), 3,4-dicyanothiophene (66 mg, 0.25 mmol) was stirred in anhydrous toluene (1.25 mL) for 24 h at 100 °C under nitrogen atmosphere. After cooling to room temperature, the mixture was poured into an aqueous solution of ethylenediaminetetraacetic acid disodium salt (pH = 8). The suspension was stirred overnight at room temperature. The precipitate was separated by filtration and washed with 0.1 M HCl solution, distilled

water, CH₃OH, and hexane. From the precipitate, the CHCl₃–soluble fraction was extracted with CHCl₃ and the solution was filtered through a plug of Celite. A reprecipitation from CHCl₃/CH₃OH gave poly[(3,4-dicyanothiophene-2,5-diyl)-(9,9-dioctylfluorene-2,7-diyl)] as yellow solid in 54% yield. M_n = 32 500, M_w/M_n = 5.91. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.0 Hz, 2H), 7.86 (overlapped, 4H), 2.13 (br, 4H), 1.18–1.12 (br, 20H), 0.81 (t, *J* = 7.2 Hz, 6H), 0.74 (br, 4H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 153.2, 152.9, 142.5, 129.4, 127.1, 122.2, 121.5, 113.2, 108.6, 56.2, 40.1, 31.8, 29.9, 29.9, 29.2, 24.0, 22.6, 14.1.

Synthesis of poly[(3,4-dichlorothiophene-2,5-diyl)-(9,9-dioctylfluorene-2,7-diyl)] (Condition B). A mixture of Pd(OAc)₂ (2.2 mg, 0.010 mmol), PCy₃·HBF₄ (3.7 mg, 0.010 mmol), pivalic acid (17 µL, 0.15 mmol), Cs₂CO₃ (326 mg, 1.0 mmol), 2,7-dibromo-9,9-dioctylfluorene (274 mg, 0.50 mmol), 3,4-dichlorothiophene (77 mg, 0.50 mmol) was stirred in anhydrous toluene (2.5 mL) for 3 h at 100 °C under nitrogen atmosphere. After cooling to room temperature, the mixture was poured into an aqueous solution of ethylenediaminetetraacetic acid disodium salt (pH = 8). The suspension was stirred 2 h at room temperature. The precipitate was separated by filtration and washed with 0.1 M HCl solution, distilled water, CH₃OH, and hexane. From the precipitate, the CHCl₃-soluble fraction was extracted with hot CHCl₃ and the solution was filtered through a plug of Celite. A reprecipitation from CHCl₃/CH₃OH gave poly[(3,4-dichlorothiophene-2,5-diyl)-(9,9-dioctylfluorene-2,7-diyl)] as yellow solid in 55% yield. M_n = 8 300, M_w/M_n = 4.74. ¹H NMR (600 MHz, CDCl₃): 7.83 (d, *J* = 7.8 Hz, 2H), 7.76 (s, 2H), 7.72 (d, *J* = 7.8 Hz, 2H), 2.06 (br, 4H), 1.11–1.22 (m, 20H), 0.82 (overlapped, 10H), ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 151.9, 141.0, 135.6, 131.1 127.6, 123.2, 121.5, 120.3, 55.6, 40.2, 31.8, 30.0, 29.2, 24.0, 22.6, 14.1.

Synthesis of poly[(3,4-dichlorothiophene-2,5-diyl)-(9,9-dioctylfluorene-2,7-diyl)] (Condition A). A mixture of Pd(OAc)₂ (1.1 mg, 0.0050 mmol), 1-adamantanecarboxylic acid (14 mg, 0.075 mmol), K₂CO₃ (86 mg, 0.63 mmol), 2,7-dibromo-9,9-dioctylfluorene (137 mg, 0.25 mmol), 3,4-dichlorothiophene (38 mg, 0.25 mmol) was stirred in anhydrous DMAc (0.84 mL) for 3 h at 100 °C under nitrogen atmosphere. After cooling to room temperature, the mixture was poured into an aqueous solution of ethylenediaminetetraacetic acid disodium salt (pH = 8). The suspension was stirred overnight at room temperature. The precipitate was separated by filtration and washed with 0.1 M HCl solution, distilled water, CH₃OH, and hexane. The precipitate was dissolved in CHCl₃ and the solution was filtered through a plug of Celite to remove insoluble material. A reprecipitation from CHCl₃/CH₃OH gave poly[(3,4-dichlorothiophene -2,5-diyl)-(9,9-dioctylfluorene-2,7-diyl)] as yellow solid in 72% yield. $M_n = 7$ 000, $M_w/M_n = 2.29$. The NMR data are essentially same as those of the polymer obtained under condition B.

Table S1 Solubility of the obtained polymers
--

	CHCl ₃	Toluene	THF	DMAc
	S	S	S	PS
$M_{\rm n} = 43000, M_{\rm w}/M_{\rm n} = 2.7$				PS*
C_8H_{17} C_8H_{17} C_8H_{17} C_8H_{17} C_8H_{17} C_8H_{17} C_8H_{17}	S	S	S	I
$M_{\rm n} = 11000, M_{\rm w}/M_{\rm n} = 1.8$				PS*
$\begin{array}{c c} & C_8H_{17} \\ \hline \\ \hline \\ H_3C \\ \hline \\ \\ H_3C \\ \\ \hline \\ \\ H_3C \\ \\ \\ \\ H_3C \\ \hline \\ \\ H_3C \\ \\ \\ \\ \\ \\ \\ H_3C \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	S	S	PS	I
$M_{\rm n} = 14000, M_{\rm w}/M_{\rm n} = 2.4$			S*	PS*
$\begin{array}{c c} C_8H_{17} & C_8H_{17} \\ \hline \\ \hline \\ CI & CI \\ \end{array}$	PS	PS	PS	Ι
$M_{\rm n} = 8300, M_{\rm w}/M_{\rm n} = 4.7$	S*	S*	PS*	PS*
$ \begin{array}{c} C_8H_{17} \\ C_8H_{17} \\ C_8H_{17} \\ C_8H_{17} \\ n \\ n \\ n \\ c \\ c \\ c \\ c \\ c$	S	S	S	I
$M_{\rm n} = 46300, M_{\rm w}/M_{\rm n} = 1.9$				PS*
$ \begin{array}{c c} C_8H_{17} \\ \hline C_8H_{17} \\ \hline C_8H_{17} \\ \hline n $	PS	Ι	PS	I
$M_{\rm n} = 33000, M_{\rm w}/M_{\rm n} = 5.9$	S*	PS*	S*	PS*

The solubility tests were conducted at 1 mg/mL at room temperature.

S: Soluble,	PS: Partly solu	ible, I: Insoluble.	*Solubility at boiling	temperature for CHCl ₃	and THF, and at
100	°C	for	toluene	and	DMAc.

Entry	Monomer	Model substituent	$\sigma_{p}{}^{a}$	$\sigma_m{}^a$	¹³ C NMR / ppm ^b
1	H S H	-OCH3	-0.27	0.12	99.6
2	H	-OCH ₃	-0.27	0.12	96.8
3	H H ₃ C CH ₃	-CH ₃	-0.17	-0.07	120.7
4		-Cl	0.23	0.37	125.0
5	H O N E H	-CONH ₂	0.36	0.28	125.4
6		-CN	0.66	0.56	136.9

Table S2 Hammett substituent constants and chemical shift of the methine carbon of the monomers

Т

^a Hammett substituent constants of the model substituents, reference 6. ^b Chemical shift of the methine carbon of the monomer in CDCl₃.

Figure S1 ¹H NMR spectrum of poly[(3,4-ethylenedioxythiophene-2,5-diyl)-(9,9-dioctylfluorene-2,7-diyl)] (400 MHz, CDCl₃).

Figure S2 ¹H NMR spectrum of poly[(3,4-dimethylthiophene-2,5-diyl)-(9,9-dioctylfluorene-2,7-diyl)] (400 MHz, CDCl₃).

Figure S3 ¹³C{¹H} NMR spectrum of **PTPDF** (100 MHz, CDCl₃).

Figure S4 ¹H NMR spectrum of poly[(3,4-dioctyloxythiophene-2,5-diyl)-(9,9-dioctylfluorene-2,7-diyl)] (600 MHz, CDCl₃).

Figure S5 ¹³C{¹H} NMR spectrum of poly[(3,4-dioctyloxythiophene-2,5-diyl)-(9,9-dioctylfluorene-2,7-diyl)] (150 MHz, CDCl₃).

Figure S6 ¹H NMR spectrum of poly[(3,4-dicyanothiophene-2,5-diyl)-(9,9-dioctylfluorene-2,7-diyl)] (400 MHz, CDCl₃).

Figure S7 ¹³C{¹H} NMR spectrum of poly[(3,4-dicyanothiophene-2,5-diyl)-(9,9-dioctylfluorene-2,7-diyl)] (100 MHz, CDCl₃).

Figure S8 ¹H NMR spectrum of poly[(3,4-dichlorothiophene-2,5-diyl)-(9,9-dioctylfluorene-2,7-diyl)] (600 MHz, CDCl₃).

Figure S9 ¹H NMR spectra of a CHCl₃-insoluble fraction an a CHCl₃-soluble fraction of poly[(3,4-dichlorothiophene-2,5-diyl)-(9,9-dioctylfluorene-2,7-diyl)] (400 MHz, CD₂Cl₄ at 333 K).

Figure S10 ¹³C{¹H} NMR spectrum of poly[(3,4-dichlorothiophene-2,5-diyl)-(9,9-dioctylfluorene-2,7diyl)] (100 MHz, CDCl₃).

References

- (a) C. B. Nielsen and T. Bjørnholm, *Org. Lett.*, 2004, 6, 3381; (b) C. Piliego, T. W. Holcombe, J. D. Douglas, C. H. Woo, P. M. Beaujuge and A. M. Fréchet, *J. Am. Chem. Soc.*, 2010, 132, 7595.
- 2 T. Darmanin and F. Guittard, *Soft Matter*, 2013, 9, 1500.
- 3 S.-R. Deng, T. Wu, C.-Q. Hu, D. Li, Y.-H. Zhou and Z.-Y. Li, Synth. Commun., 2007, 37, 71.
- 4 A. Henckens, M. Knipper, I. Polec, J. Manca, L. Lutsen and D. Vanderzande, *Thin Solid Films*, 2004, **451-452**, 572.
- 5 D. W. H. MacDowell and J. C. Wisowaty, J. Org. Chem., 1972, 37, 1712.
- 6 C. Hansch, A. Leo and R. W. Taft, *Chem Rev.*, 1991, **91**, 165.