Nitrogen-Enriched Hierarchically Porous Carbons Fabricated by Graphene Aerogel Templated Schiff-base Chemistry for High Performance Electrochemical Capacitors

### **Electronic Supplementary Information**

Xiangwen Yang,<sup>a</sup> Xiaodong Zhuang,<sup>a</sup> Yinjuan Huang,<sup>a</sup> Jianzhong Jiang,<sup>a</sup> Hao Tian,<sup>a</sup> Dongqing Wu,<sup>a</sup> Fan Zhang,<sup>a</sup> Yiyong Mai, \*<sup>a</sup> Xinliang Feng \*<sup>a,b</sup>

<sup>*a*</sup> School of Chemical and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P. R. China

<sup>b</sup> Department of Chemistry and Food Chemistry Technische, Universitaet Dresden, Mommsenstrasse 4, 01062 Dresden, Germany

E-mail: Prof. Y. Mai: mai@sjtu.edu.cn; Prof. X. Feng: xinliang.feng@tu-dresden.de

### **1. Experimental Section**

### Materials

Natural flake graphite was purchased from Aldrich. 1,4-Phthalaldehyde (99%) was purchased from Energy Chemical (Shanghai, China) and used without further purification. All other chemicals (~99%) were purchased from Aladdin Reagent (Shanghai) and used without further purification. Organic solvents were distilled before use.

### Preparation of monolithic graphene aerogels (GAs)

To produce three-dimensional (3D) GAs, graphene oxide (GO) was initially prepared from natural graphite flakes by a modified Hummer's method.<sup>1</sup> 3D GAs were obtained through a combined hydrothermal and freeze-drying process.<sup>2</sup> First, the as-prepared GO was dispersed in deionized (DI) water by sonication reaching a concentration of 1.5 mg mL<sup>-1</sup>. Second, 80mL GO aqueous dispersion was sealed in a Teflon-lined autoclave and then hydrothermally treated at 180  $\degree$  for 12 h. Finally, the resultant samples were freeze-dried for 2 days to yield 3D GAs.

#### Synthesis of aminated graphene aerogels (AGAs)

AGAs were prepared through amidation of residual carboxylic acid groups of 3D GAs. First, 50mg GAs were repeatedly infiltrated in dry DMF with *N*-hydroxysuccinimide (NHS, 342 mg) and *N*-(3-(dimethylamino)propyl)-*N*<sup>2</sup>-ethylcarbodiimide hydrochloride (EDC•HCl, 575mg) at 0 °C under mild stirring for 4h; then, 1,3-diaminopropane (0.38mL) was added. The mixture was gently stirred for 24 h at room temperature, yielding black bulk products. AGAs were obtained after washing the bulk products with DI water and ethanol for at least 3 times, followed by vacuum drying at ca. 40 °C overnight. The carbon and nitrogen contents of the AGAs measured by elemental analysis are 65.9 wt% and 4.8 wt%, respectively.

# Synthesis of 3D Graphene-Coupled Schiff-base Hierarchically Porous Polymers (GS-HPPs)

AGAs (3 equiv. by weight) were immersed in dry DMSO followed by the addition of melamine and 1,4-phthalaldehyde (57, 27, and 17 equiv. by weight for GS-HPP-5, GS-HPP-10, GS-HPP-15 respectively; the molar ratio of melamine to 1,4-phthalaldehyde is 2:3). After nitrogen bubbling for 0.5 h and then gentle stirring for about 2h, the mixture was incubated at room temperature for 3 days for the complete infiltration of the monomers into the interior space of the AGAs. Subsequently, the mixture was heated to 180 °C followed by reflux for 3 days under a nitrogen atmosphere. The resultant black bulk products were collected, washed with excess DMF and acetone, and then purified by Soxhlet fraction for 3 days using THF as the solvent. Finally, the solid products were filtered and then dried in vacuum at room temperature overnight, yielding GS-HPPs. The control sample, porous polymers (PP) without GA as a template, was synthesized under the similar conditions except the addition of AGA.

### Pyrolysis of the GS-HPPs

The GS-HPP samples were placed in a quartz boat and heated to 800  $^{\circ}$ C (for GS-HPP-10, heated to 700, 800, and 900  $^{\circ}$ C) at a heating rate of 5  $^{\circ}$ C/min under a nitrogen atmosphere. The samples were held at the corresponding temperatures for 2 h. After cooling to room temperature, the pyrolyzed samples (N-HPCs) were collected for subsequent characterizations.

### Characterizations

**Fourier transform infrared spectroscopy (FT-IR)**. The IR spectra were obtained on a Spectrum 100 (Perkin Elmer, Inc., USA) spectrometer with a frequency range of 4000–400 cm<sup>-1</sup>. The sample powders were pulverized with KBr, and pressed into disks.

**Thermogravimetric analysis (TGA)**. TGA of the samples were carried out on a Q5000IR (TA Instruments, USA) thermogravimetric analyzer with a heating rate of 20  $^{\circ}$ C min<sup>-1</sup> under nitrogen flow with temperature range of 0  $^{\circ}$ C-800  $^{\circ}$ C.

**Elemental analysis (EA).** Elemental analysis was performed using a Vario ELIII/Isoprime (Elementar Co., Germany) isotope ratio mass spectrometer.

**X-ray photoelectron spectroscopy (XPS)**. XPS was measured on an AXIS Ultra DLD system (Kratos Co., Japan) with Al Kα radiation as the X-ray source.

Brunauer–Emment–Teller (BET) specific areas were measured on an Autosorb-iQA3200-4 sorption analyzer (Quantatech Co., USA) based on N2

adsorption.

**Scanning electron microscopy (SEM)**. SEM observations were performed using an FEI Sirion-200 (FEI Co., USA) field emission scanning electron microscope. The 3D samples were directly put on copper tables without other treatment.

**Transmission electron microscopy (TEM)**. TEM studies of samples were performed using a JEOL-2100 (JEOL Ltd., Japan) electron microscope at an operating voltage of 200 kV. Before the TEM measurement, GS-HPP and N-HPC samples were dispersed in ethanol and sonicated for 2h. TEM samples were prepared by dropping a drop of the ethanol dispersion on copper grids, followed by drying at 60 °C overnight.

**Electrochemical capacity measurements**: Performance of supercapacitor was evaluated on an EG & potentiostat/galvanostat Model 2273 advanced electrochemical system. CV measurements and charge-discharge galvanostatic tests were performed in a three-electrode system. Working electrodes for supercapacitor were prepared by mixing 80 wt% powdered active materials (~ 2 mg), 10 wt% carbon black (Mitsubishi Chemicals, Inc.), and 10 wt% polytetrafluoroethylene (PTFE) binder. Nickel foam was applied as a counter electrode with a Ag/AgCl electrode as a reference electrode. The experiments were carried out in 6 M KOH solution. The potential range was between -1 to 0 V (Ag/AgCl) at different scan rates and different current densities at the ambient temperature. Nyquist plots of the samples were recorded by applying a sine wave with amplitude of 5.0 mV over the frequency range of 100 kHz ~ 1 Hz.

## 2. Figures and Tables



Figure S1. FT-IR spectra of GA and GS-HPPs.



Figure S2. SEM (a and b), TEM (c) images and nitrogen adsorption-desorption isotherm and PSD curve (d) of GS-HPP-5.



Figure S3. SEM (a and b), TEM (c) images and nitrogen adsorption-desorption isotherm and PSD curve (d) of GS-HPP-15.



Figure S4. Representative scanning TEM (STEM) images (a1 and b1) and the corresponding elemental mapping images of carbon (a2 and b2, blue) and nitrogen (a3 and b3, red). (a1-a3) for GS-HPP-5; (b1-b3) for GS-HPP-15.



Figure S5. TEM image of Schiff-base porous polymer (PP) prepared from the polymerization of melamine and 1,4-phthalaldehyde without a GA template.



Figure S6. TGA curves of GS-HPPs and PP. The curves were obtained under nitrogen atmosphere



Figure S7. SEM (a, b), TEM (c) images and nitrogen adsorption-desorption isotherm and PSD curve (d) of N-HPC-5.



Figure S8. SEM (a, b), TEM (c) images and nitrogen adsorption-desorption isotherm and PSD curve (d) of N-HPC-15.



Figure S9. CV curves of N-HPCs, GA and PC as electrodes recorded at a scan rate of 5 mV/s in 6 M KOH electrolyte solution.



Figure S10. Equivalent circuit and complex impedance spectrum of N-HPC based capacitor (Red: received data; green: calculated data). According to the equivalent circuit, the ohmic resistance values ( $R_t$ ) of the samples are obtained and listed below.

| Samples  | $R_{\mathrm{t}}\left(\Omega\right)$ |
|----------|-------------------------------------|
| N-HPC-5  | 0.54                                |
| N-HPC-10 | 0.30                                |
| N-HPC-15 | 0.48                                |
| GA       | 1.10                                |
| PC       | 1.21                                |

| Samples          | N <sub>wt%</sub> | N <sub>atom%</sub> | $\mathbf{N}_{\mathbf{graphitic}}{}^{a}$ | $\mathbf{N}_{\mathrm{Pyridinic}}{}^{a}$ | N <sub>Pyridinic</sub><br>/ N <sub>graphitic</sub> |
|------------------|------------------|--------------------|-----------------------------------------|-----------------------------------------|----------------------------------------------------|
| GS-HPP-10        | 36.1             | 33.2               | NA                                      | NA                                      | NA                                                 |
| N-HPC-10 (700°C) | 8.1              | 7.2                | 16,670                                  | 9,730                                   | 0.58                                               |
| N-HPC-10 (800°C) | 6.0              | 5.1                | 17,780                                  | 7,050                                   | 0.40                                               |
| N-HPC-10 (900°C) | 2.8              | 2.4                | 7,190                                   | 1,220                                   | 0.17                                               |

Table S1. Data obtained from the XPS spectra of GS-HPP-10 and N-HPC-10 prepared at different pyrolysis temperatures

<sup>*a*</sup> the values were obtained from the integration areas of the corresponding peaks in the XPS spectra in Figure 3d in the main text.

## 3. Reference

[1] S. Yang, X. Feng, L. Wang, K. Tang, J. Maier, K. Müllen, *Angew. Chem. Int. Ed.* **2010**, 49, 4795.

[2] Z. Wu, Y. Sun, Y. Tan, S. Yang, X. Feng, K. Müllen, J. Am. Chem. Soc., 2012, 134, 19532.