Supplementary Information

Graft copolymers of hydroxyethyl cellulose by a 'grafting to' method: ${ }^{15} \mathrm{~N}$ labelling as a powerful characterisation tool in 'click' polymer chemistry

Fanny Joubert, Osama Musa, David R. W. Hodgson and Neil R. Cameron*

RAFT Polymerisations

Synthesis of RAFT agents $\mathbf{5}$ and $\mathbf{8}$ are shown in Schemes S1 and S2 respectively.

Scheme S1: Preparation of O-ethyl S-prop-2-ynyl carbonodithiolate (5)

Scheme S2: Synthesis of alkyne-terminated trithiocarbonate (8)

Polymerisation of NVP ad NIPAAM are shown in Schemes S3 and S4.

Scheme S3: RAFT polymerisation of NVP

Scheme S4: RAFT polymerisation of NIPAAM

Selected data for PVP and PNIPAAM prepared by RAFT are shown in Figures S1-4.

Figure S1: Solution state ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ spectrum of poly($\mathrm{N}-$

$$
\text { vinylpyrrolidone })(\mathrm{PVP}) \mathbf{1 0}\left(\mathrm{DP}_{\text {targeted }}=10\right)
$$

Figure S2: Results of SEC analysis of poly(N-vinylpyrrolidone) (PVP) ($\mathrm{DP}_{\text {targeted }}$ $=10$)

Figure S3: Solution state ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of PNIPAAM 12

Figure S4: Results of the SEC analysis of PNIPAAM ${ }_{10}$ polymerised using trithiocarbonate $\mathbf{8}$ (black) and xanthate $\mathbf{5}$ (orange) as chain transfer agent

The xanthate (5) that was used to polymerise NVP was also used to polymerise NIPAAM (Figure S4). However, only 60% monomer conversion was obtained after overnight reaction and the molecular weight distribution was broader compared to that obtained with the trithiocarbonate $\left(~_{\mathrm{M}}=1.5\right.$ vs. 1.2).

CuAAC Coupling Reactions

Scheme S5: CuAAC between N_{3}-HEC and transfer agent

Scheme S6: CuAAC reaction between N_{3} - HEC and alkyne-terminated PVP_{10}

The numbering scheme used in the NMR characterisation of HEC-g-PVP is shown in Figure S 5.

$\left.\begin{array}{c}\mathrm{R}=\mathrm{H} \text { or/and } \\ \mathrm{OR}^{\prime}=\mathrm{N}_{3} \text { or }-\mathrm{O}-\end{array}\right\}$

Figure S5: Numbering of the molecular structure of HEC-g-PVP ${ }_{10}$, where x and y represent the degree of functionalization

$\mathrm{OR}=\mathrm{R}$ " or $-\mathrm{O}-\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{1.5}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{R}^{\prime \prime}$
$\mathrm{OR}=\mathrm{N}_{3}$ or $-\mathrm{O}-\left(\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}\right)_{1.5}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}$ $\mathrm{R}^{\prime}=\mathrm{H}$ or $-\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{1.5}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}$

2
$\mathrm{R}^{\prime}=\mathrm{H}$ and/or $-\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{1.5}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{R}^{\prime \prime}$

Scheme S6: CuAAC between alkyne-ended PNIPAAM ${ }_{10}$ and partially labelled $\mathrm{N}_{3}-$ HEC

The FTIR spectrum of the coupled product, showing the disappearance of the azide peak, is shown in Figure S6.

Figure S6: FT-IR spectrum of (a) HEC-g-PNIPAAM ${ }_{10}$ and (b) N_{3}-HEC

