Electronic Supporting Information (ESI) for

Tuning Thermal Properties and Microphase Separation in Aliphatic Polyester ABA Copolymers

J.P. MacDonald,^a M.P. Parker, ^b B.W. Greenland^b D. Hermida-Merinoc,^c I.W. Hamely^b and M.P. Shaver*^a

^aSchool of Chemistry, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh, EH9 3JJ, United Kingdom

^bReading School of Pharmacy, University of Reading, Whiteknights, Reading,

Berkshire RG6 6AD, United Kingdom

°DUBBLE @ ESRF – The European Synchotron, CS40220, 38043 Grenoble Cedex 9, France.

Table of Contents

Table S1	: Carbo	nylation of	termina	l epoxy	alkanes u	using ClCi	r[TPP]		S3
Table S2	: Homo	polymerisat	tion of a	lkyl-sı	ıbstituted	β-lactone	s at 12	20°C		.S3
Table S3	: Homo	polymerisat	tion of a	lkyl –	substitute	ed β-lactor	nes us	ing 3		.S4
Figure	S1:	Kinetic	plot	of	β-VL	using	1	(0)	and	3
(□)			S4							
Table S4	: Higher	r molecular	weight	P(3HP) and $P(3$	HH) using	g 1			.85
Figure S2	2: ¹ H N	MR spectra	a of 1) P	(L - LA	100), 2) P(L-LA ₁₀₀ -b	-3HH	100) and	3)	
P(L-LA ₁₀₀) - <i>b</i> -3HE	Н ₁₀₀ - <i>b</i> - L-LA	A ₁₀							S5
Table S5	: Effect	of Tempera	ature of	Monoi	ner Addi	tion and P	olyme	er Dispe	rsites	.S6
Table S6	: DSC a	nalysis of H	P(L-LA _n	- <i>b</i> -3HI	3 _m - <i>b</i> -L-L/	A _n)				S6
Figure Sa	B: DSC	thermogran	ns for P	(L-LA _r	-b-3HB _m	-b-L-LA _n)	(incre	easing P	LA% to	op
to bottom). Heati	ng rate = 10)°C min	-1						.S6
Table S7	: DSC a	nalysis of H	P(L-LA _n	- <i>b</i> -3HI	₽ _m - <i>b</i> -L-LA	A _n)				.S7
Figure S ²	4: DSC	thermogran	ns for P	(L - LA _r	-b-3HP _m -	·b-L-LA _n)	(incre	easing P	LA% to	эр
to bottom). Heati	ng rate = 1()°C min	-1						.S7
Table S8	: DSC a	nalysis of H	P(L-LA _n	- <i>b</i> -3HI	Im- <i>b</i> -L-L	A _n)				.S8
Figure St	5: DSC	thermogran	ns for P	(L - LA _r	- <i>b</i> -3HH _m	-b-L-LA _n)	(incre	easing P	PLA% t	ор
to bottom). Heati	ng rate = 10)°C min	-1						.88
Figure So	6: DSC	thermogran	ns for P	(L - LA	₁₀₀ - <i>b</i> -3HI	H ₁₀₀ - <i>b</i> -L-L	A ₁₀₀)	(top), P	$(L - LA_1)$	00-
<i>b</i> -3HH ₇₅ -	b-L-LA	100) and P(L	-LA ₁₀₀ -	<i>b</i> -3HF	I ₅₀ - <i>b</i> -L-L	(4_{100}) (bott	tom). I	Heating	rate =	
30°C min	-1									.S9
Table S9	: Homo	polymerisat	tion Dat	a for β	-BL					.S9
GPC Det	ails:									.S9

Table S1 Carbonylation of terminal epoxyalkanes using ClCr[TPP]

R	[epoxide]/[catalyst]	mass epoxide (g)	Conversion (%)
Et	4000	5.8	> 99
nBu	2000	4.0	> 99
$C_{10}H_{21}$	1000	3.1	> 99

Table S2 Homopolymerisation of alkyl-substituted $\beta\text{-lactones}$ at 120°C

Monomer	Time (h)	Conversion (%) ^b	$\mathbf{M}_{n,th}^{\mathbf{c}}$	$\mathbf{M_n^d}$	$\mathbf{\hat{P}}^{d}$
β - VL	6	> 99	10120	9410	1.11
β-HL	6	> 99	12920	10760	1.07
β-TDL	12	> 99	21340	17430	1.05
^a Polymerisation conducted in toluene at 120°C with $[Al]_0/[M]_0:[BnOH]_0 = 1:100:1$. ^b					

Monomer	Temperature (°C)	Time (h)	Conversion (%) ^b	$\mathbf{M}_{n,th}^{\mathbf{c}}$	$\mathbf{M_n}^d$	Ðď
β - VL	22	48	-	-	-	-
	85	18	>99	10120	8300	1.05
	120	6	>99	10120	9530	1.08
β - HL	22	48	-	-	-	-
	85	18	>99	12920	10250	1.04
	120	6	96	12410	9860	1.07

Table S3 Homopolymerisation of alkyl – substituted β-lactones using 3^a

^a Polymerisation conducted in toluene with $[Al]_0/[M]_0:[BnOH]_0 = 1:100:1$. ^b Conversion determined by ¹H NMR spectroscopy. ^c $M_{n,th}$ = conversion × MW monomer + MW endgroup. ^d M_n and Đ determined by GPC.

Figure S1 Kinetic plot of β -VL using **1** (O \square and **3** (\square).

Monomer	[M] ₀ /[Al]	Temperature	Time	Conv.	$\mathbf{M}_{n,th}^{\mathbf{c}}$	$\mathbf{M_n^d}$	Ðď
	0	(°C)	(h)	(%) ^b			
β - VL	200	85	40	95	19130	13020	1.10
	500	85	72	> 99	50170	27890	1.13
		120	48	> 99	50170	26680	1.21
β-HL	200	85	40	> 99	25740	19380	1.08
	500	85	72	78	50010	27600	1.08
		120	48	89	56820	23870	1.10

Table S4 Higher molecular weight P(3HP) and P(3HH) using 1^a

^a Polymerisation conducted in toluene. ^b Conversion determined by ¹H NMR spectroscopy. ^c $M_{n,th}$ = conversion × MW monomer + MW endgroup. ^d M_n and Đ determined by GPC.

Figure S2 ¹H NMR spectra of 1) P(L-LA₁₀₀), 2) P(L-LA₁₀₀-*b*-3HH₁₀₀) and 3) P(L-LA₁₀₀-*b*-3HH₁₀₀-*b*-L-LA₁₀₀).

Sample	Monomer addit	ion temperature			
	25 ^b	85°			
P(L-LA ₂₀₀)	1.09	1.09			
P(L-LA ₂₀₀ - <i>b</i> -3HH ₂₀)	1.10	1.10			
$P(L-LA_{200}-b-3HH_{20}-b-L-LA_{200})$	1.30	1.14			
^a Sequential addition block copolymerisation. ^b Monomer added in					
glovebox at room temperature. ^c Monomer added in toluene at 85°C.					

 Table S5 Effect of Temperature of Monomer Addition and Polymer Dispersites^a

 Sample

Table S6 DSC analysis of P(L-LA_n-b-3HB_m-b-L-LA_n)nm T_g (°C) T_m (°C) T_c (°C)

n	m	$T_{g}(^{\circ}C)$	T_m (°C)	T _c (°C)
10	100	0.7	-	-
20	100	9.9	-	-
50	100	21.9	138.8	108.6
75	100	23.3	155.6	99.2
100	100	28.9	152.2	101.6
100	75	34.8	153.6	103.0
100	50	43.9	157.7	104.4
100	20	51.4	159.6	111.9
100	10	52.4	162.4	104.4

Figure S3 DSC thermograms for $P(L-LA_n-b-3HB_m-b-L-LA_n)$ (increasing PLA% top to bottom). Heating rate = 10°C min⁻¹.

n	m	$T_{g}(^{\circ}C)$	$T_{m}(^{\circ}C)$	$T_{c}(^{\circ}C)$
10	100	-14.8	-	-
20	100	-6.3	-	-
50	100	1.5	130.7	81.0
75	100	19.0	145.0	86.5
100	100	19.0	152.0	88.0
100	75	27.0	153.5	88.2
100	50	31.5	154.9	82.5
100	20	46.3	155.4	105.5
100	10	53.5	160.1	106.5

Table S7 DSC analysis of P(L-LA_n-b-3HP_m-b-L-LA_n)

Figure S4 DSC thermograms for $P(L-LA_n-b-3HP_m-b-L-LA_n)$ (increasing PLA% top to bottom). Heating rate = 10°C min⁻¹.

Table 58 DSC analysis of $P(L-LA_n-0-3HH_m-0-L-LA_n)$						
n	m	$T_{g}(^{\circ}C)$	T_m (°C)	$T_{c}(^{\circ}C)$		
10	100	-25.7	-	-		
20	100	-21.1	-	-		
50	100	-23.5	130.2	64.2		
75	100	-25.1	141.0	73.0		
100	100	-24.4	152.0	82.5		
		45.9				
100	75	-21.4	153.2	94.2		
		40.5				
100	50	40	156.5	89.3		
100	20	46.9	157.0	93.5		
100	10	47.4	157.0	95.2		

-*h*-L-LA_n) Table S8 DSC analysis of P(1-LA *.h*_3HH

Figure S5 DSC thermograms for $P(L-LA_n-b-3HH_m-b-L-LA_n)$ (increasing PLA% top to bottom). Heating rate = 10°C min⁻¹.

Figure S6 DSC thermograms for $P(L - LA_{100}-b-3HH_{100}-b-L-LA_{100})$ (top), $P(L - LA_{100}-b-3HH_{75}-b-L-LA_{100})$ and $P(L - LA_{100}-b-3HH_{50}-b-L-LA_{100})$ (bottom). Heating rate = 30°C min⁻¹.

Table S9 Homopolymerisation of β -BL with 1 ^a								
T (°C)	Time	Conv.	$M_{n,th}^{c}$	$\mathbf{M_n^d}$	Ðď			
	(h)	(%) ^b						
70	6	92	7900	6400	1.03			
85	6	>99	8720	7570	1.04			
^a Polymerisation conducted in toluene with [Al] ₀ /[M] ₀ :[BnOH] ₀								
= 1:100:1. ^b Conversion determined by ¹ H NMR spectroscopy.								
^c $M_{n,th}$ = conversion × MW monomer + MW endgroup. ^d M_n								
and Đ determined by GPC.								

GPC Details: In some cases, solubility became an issue, particularly polymer samples with higher amounts of semi-crystalline PLA. While all homopolymer samples as well as AB block copolymers were dissolved in THF alone, several ABA block copolymer samples would not fully dissolve. ABA block copolymers where n < 100 were dissolved in THF while samples where n = 100 were dissolved in CHCl₃ and run with THF as an eluent.