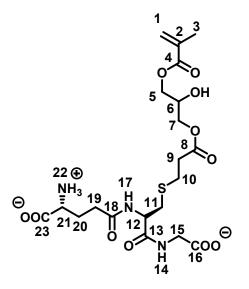
Supporting Information for Polymer Chemistry manuscript:

Synthesis and characterization of

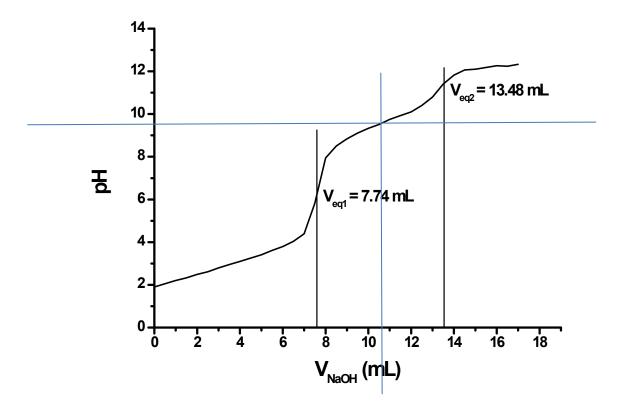
poly(amino acid methacrylate)-stabilized diblock copolymer nanoobjects


Vincent Ladmiral,* Alexandre Charlot, Mona Semsarilar, Steven P. Armes*

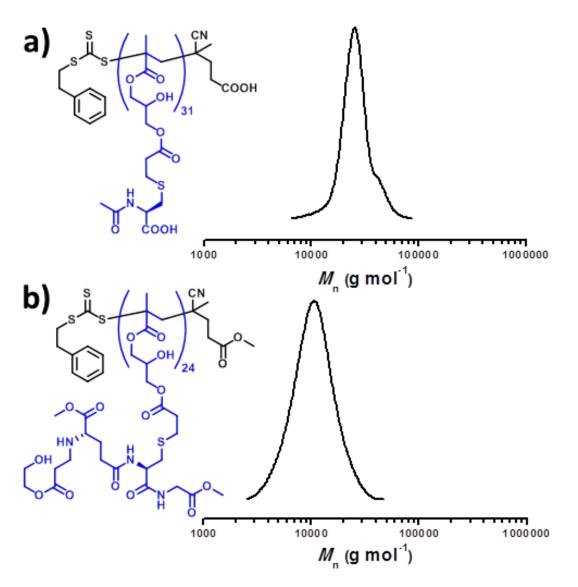
Note regarding RAFT agent efficiency

Differences between the mean DP calculated by ¹H NMR end-group analysis and the DP calculated using the following equation DP = $(n_{M0}/n_{RAFT0}) \times conversion$, (where n_{M0} and n_{RAFT0} are, respectively, the molar quantities of monomer and RAFT agent introduced in the reaction at t = 0) were observed.

¹H NMR end-group analysis of RAFT polymers is based on the assumption that every polymer chain possesses the Z-group of the RAFT agent at its ω -end. Several reactions can occur in the course of the polymerization, or during purification/work-up that might undermine this assumption: (1) premature termination between polymer radicals or via their reaction with other radicals; (2) hydrolysis of the trithiocarbonate group during either synthesis or work-up (e.g. dialysis); (3) lower than expected participation of the RAFT agent in the polymerization.; (4) error in the mass of RAFT agent and/or monomer actually used for the polymerization; (5) impurities in the RAFT agent. In our calculations, chain transfer does not have any impact since this side reaction does not reduce the number of RAFT end-groups. Nonetheless, it is very difficult to identify the cause of the difference between the DP calculated from ¹H NMR end-group analysis and the theoretically expected DP. We have chosen to interpret this discrepancy in terms of RAFT agent (in)efficiency.


Figure S1. NMR signal assignment for GSHMA

¹H NMR (400.13 MHz, DMSO-d₆, 298K): δ 1.95 (s, 3H₃), 2.15 (dd, 2H₁₉), 2.50-2.54 (dt, 2H₂₀), 2.74-2.89 (m, 2H₉, 2H₁₀, 2H₁₁), 3.06-3.11(dd, 1H₁₂), 3.34 (t, 1H, OH), 3.71-3.80 (m, 4H, 1H₆, 2H₁₅, 1H₂₁), 4.20-4.25 (m, 4H, 2H₅, 2H₇), 5.77 (d, 1H₁'), 6.18 (d, 1H₁), 8.19 (t, 1H₁₄), 8.52 (d, 3H₂₂).


¹³C NMR (400.13 MHz, DMSO-d₆, 298K): δ 17.5 (C₃), 26.3 (C₂₀), 26.7 (C₁₀), 31.5 (C₁₉), 33.0 (C₁₁), 34.2 (C₉), 43.5 (C₁₅), 54.2 (C₆), 62.1 (C₂₁), 65.3 (2C, C₅, C₇), 66.9 (C₁₂), 127.3 (C₁), 135.6 (C₂), 169.3, 171.8, 174.0, 174.8, 176.1, 177.1 (6C, C₄, C₈, C₁₃, C₁₆, C₁₈, C₂₃).

 V_0 = 1mL of GSHMA solution was diluted to 5 mL with DI water and titrated with an aqueous 75 mM NaOH solution. [GSHMA]_0 = ((V_{eq2}-V_{eq1})^* c_{NaOH})/V_0 = 0.438 \text{ M}.

Figure S3. DMF GPC chromatograms obtained for PCysMA₃₁ and PGSHMA₂₄

DMF gel permeation chromatograms recorded for: (a) PCysMA₃₁, 94 % conversion, M_n (NMR) = 10,700 g mol⁻¹, M_w/M_n = 1.11; (b) PGSHMA₂₄, 98 % conversion, M_n (NMR) = 12,800 g mol⁻¹, M_w/M_n = 1.20. PCysMA₃₁ and PGSHMA₂₄ were derivatized (acetylation using acetic anhydride for PCysMA₃₁ and both Michael addition with 2-hydroxyethyl acrylate and methylation with trimethylsilyl diazomethane in the case of PGSHMA₂₄) prior to GPC analysis.

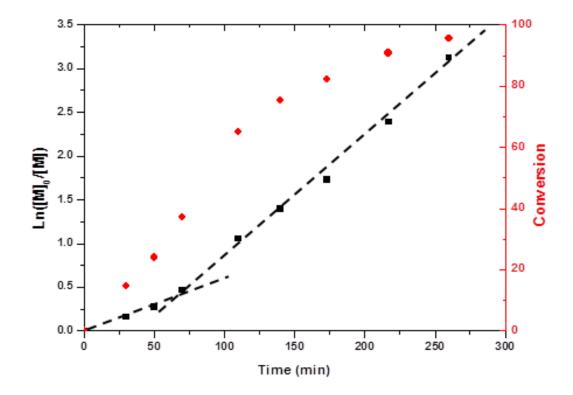
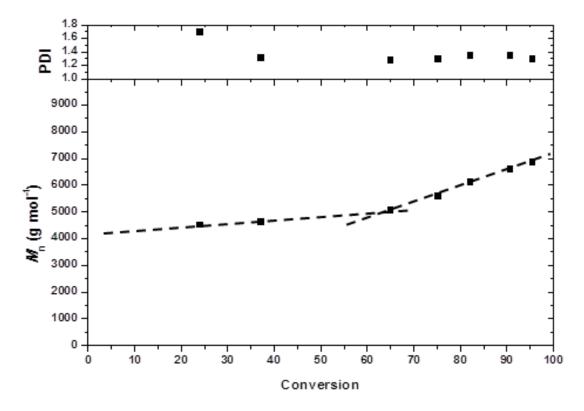
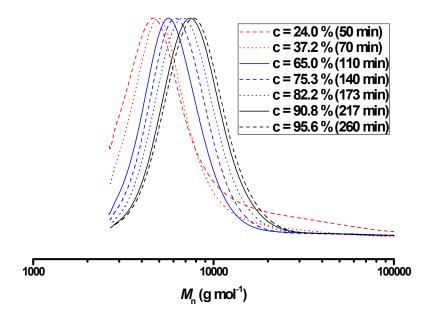
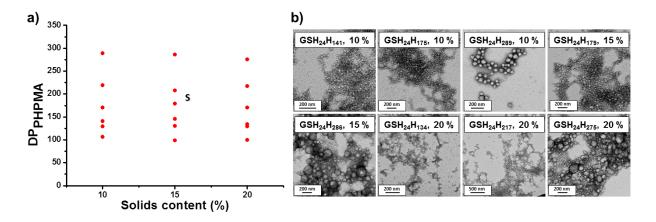




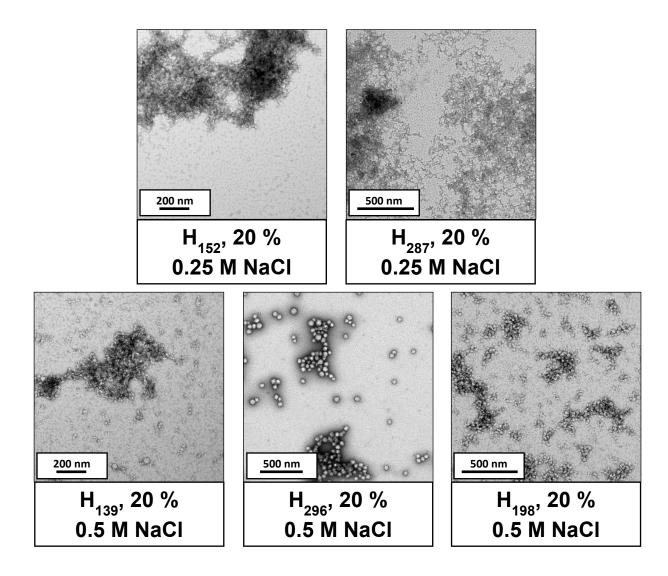
Figure S4. RAFT solution polymerization of cysteine methacrylate (CysMA)

First-order kinetic plot and evolution of conversion vs time for the RAFT polymerization of CysMA in an 83:17 w/w water/dioxane mixture at 70 °C. Reaction conditions: [CysMA] : [PETTC] : [ACVA] = 50 : 1 : 0.2, [CysMA] = 9 wt %.



Evolution of M_n and polydispersity vs conversion for the RAFT polymerization of CysMA in an 83:17 w/w water/dioxane mixture at 70 °C. Reaction conditions: [CysMA] : [PETTC] : [ACVA] = 50 : 1 : 0.2, [CysMA] = 9 wt %.

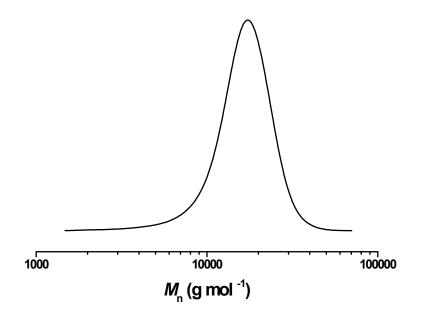
Aqueous GPC chromatograms obtained for samples taken at different times during the RAFT solution polymerization of CysMA in water/dioxane mixture.


Figure S5. Phase diagram and representative TEM images obtained for the RAFT aqueous dispersion polymerization of HPMA using a PGSHMA₂₄ macro-CTA

(a) Phase diagram constructed for PGSHMA₂₄–PHPMA_x diblock copolymer nano-objects prepared by RAFT aqueous dispersion polymerization of HPMA using a PGSHMA₂₄ macro-CTA at 70°C. The target PHPMA DP and the total solids content were systematically varied and the *post mortem* copolymer morphologies obtained at > 98 % HPMA conversion were determined by TEM. N.B. S denotes spheres.

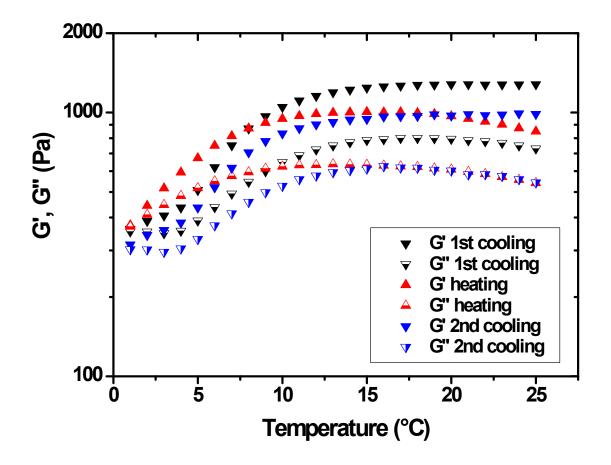
(b) Representative TEM images obtained for PGSHMA₂₄–PHPMA_x (denoted GSH₂₄–H_x for brevity) diblock copolymer nano-objects prepared by RAFT aqueous dispersion polymerization of HPMA at 70 °C. The target block composition and copolymer solids content % are indicated on each image.

Figure S6. TEM images obtained for diblock copolymer nano-objects formed in the presence of NaCI



Representative TEM images obtained for $PGSHMA_{24}$ – $PHPMA_x$ diblock copolymer nano-objects prepared by RAFT aqueous dispersion polymerization of HPMA at 70 °C in the presence of NaCI. The targeted DP for the PHPMA block (herein denoted by 'H' for brevity) and the copolymer solids content % is indicated on each image.

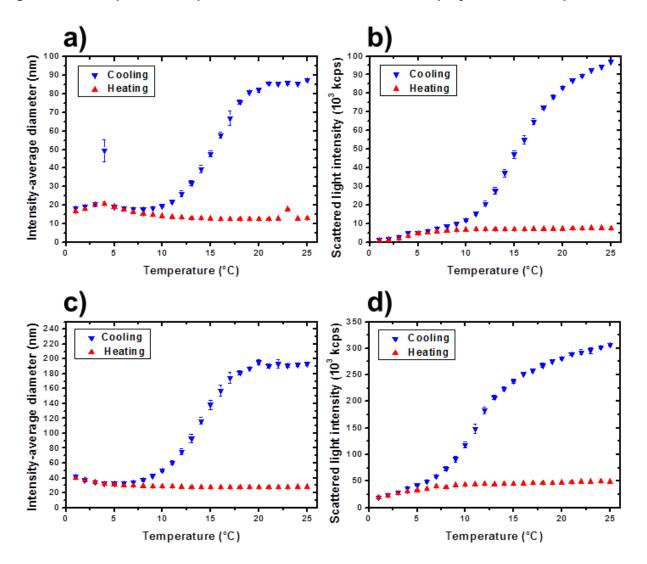
Figure S7. TEM images obtained for diblock copolymer nano-objects prepared using relatively short PGSHMA macro-CTAs



Representative TEM images obtained for $PGSHMA_{11}$ -PHPMA_x and $PGSHMA_{15}$ -PHPMA_x diblock copolymer nano-objects prepared by RAFT aqueous dispersion polymerization of HPMA at 70 °C. The targeted DP for the PHPMA block (herein denoted by 'H' for brevity) and the copolymer solids content % is indicated on each image.

DMF GPC chromatogram obtained for PGMA₅₅ : $M_{\rm n}$ = 15,100 g mol⁻¹, $M_{\rm w}$ = 19,600 g mol⁻¹, $M_{\rm w}$ / $M_{\rm n}$ = 1.15

Figure S9. Temperature dependence of the storage and loss moduli observed for a 20 % w/w PGSHMA₂₄ + PGMA₅₅)-PHPMA₁₇₈ diblock copolymer worm gel dispersion



Variation of storage modulus (G') and loss modulus (G") for a 20% w/w (1:9 PGSHMA₂₄ + PGMA₅₅)-PHPMA₁₇₈ diblock copolymer worm gel dispersion during the following temperature cycling: (i) cooling from 25 to 1 °C (G' = inverted black triangles, G" = inverted black and white triangles); (ii) subsequent warming from 1 to 25 °C in 1 °C increments (G' = red triangles, G" = red and white triangles) and (iii) cooling from 25 to 1 °C in 1 °C increments (G' = inverted blue triangles, G" = inverted blue and white triangles).

Notes: The cross-over temperature appeared to be slightly below 1 °C in this case.

Hysteresis is observed between the first cooling and heating cycles. This was much less marked between the heating and the second cooling cycles.

Figure S10. Temperature-dependent DLS studies of diblock copolymer worm dispersions

Temperature-dependent DLS studies, showing the variation in intensity-average diameter and scattered light intensity respectively, for: (a, b) a (1:9 PCysMA₃₁ + PGMA₅₅)-PHPMA₁₆₆ dispersion of diblock copolymer worms diluted to 1% w/w; (c, d) a (1:9 PGSHMA₂₄ + PGMA₅₅)-PHPMA₁₇₈ dispersion of diblock copolymer worms diluted to 1.0% w/w.

In the case of (1:9 PCysMA₃₁ + PGMA₅₅)-PHPMA₁₆₆ (see Figures S10a and S10b), the apparent sphere-equivalent hydrodynamic diameter decreases from around 90 nm at 25°C to 20 nm at 1°C, with a concomitant reduction in the scattered light intensity. These measurements are consistent with visual observations and rheological data and confirm that degelation occurs via a worm-to-sphere transition. However, on warming the cold 1% w/w copolymer dispersion to ambient temperature, the sphere-to-worm transition is *not* observed, even on standing for relatively long time scales (weeks). This is because of the reduced probability of efficient 1D fusion of spheres at this relatively low copolymer concentration.^{76b}

The DLS data (see Figures S11c and S11d) are very similar to those obtained for a dilute dispersion of (1:9 PCysMA₃₁ + PGMA₅₅)-PHPMA₁₆₆. Thus cooling a 1% w/w dispersion of (1:9 PGSHMA₂₄ + PGMA₅₅)-PHPMA₁₇₈ diblock copolymer nano-objects results in a near-monotonic reduction in particle size and scattered light intensity. Polydisperse worms with a sphere-equivalent diameter of 180 nm were observed at 25°C, while near-monodisperse spheres of 40 nm were obtained below 10°C. No sphere-to-worm transition occurred on returning to 25°C, confirming that the (ir)reversibility of this thermal transition has a strong concentration dependence.

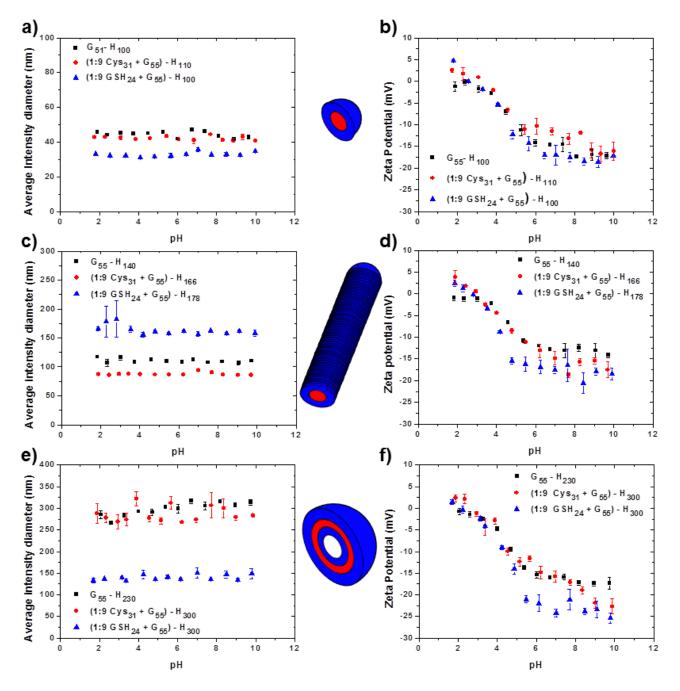


Figure S11. Variation of zeta potential and intensity-average diameter with pH for spheres, worms and vesicles.

Variation of zeta potential and intensity-average diameter with pH for spheres, worms and vesicles. (a) Intensity-average diameter vs. pH for PGMA₅₅-PHPMA₁₀₀ spheres (black squares), (1:9 PCysMA₃₁ + PGMA₅₅)-PHPMA₁₁₀ (red circles), and (1:9 PGSHMA₂₄ + 0.9PGMA₅₅)-PHPMA₁₀₀ (blue triangles). (b) Zeta potential vs. pH for the same diblock copolymer dispersions. (c) Intensity-average diameter vs pH for PGMA₅₅-PHPMA₁₄₀ worms (black squares), (1:9 PCysMA₃₁ + PGMA₅₅)-PHPMA₁₆₆ (red circles), and (1:9 PGSHMA₂₄ + PGMA₅₅)-PHPMA₁₇₈ (blue triangles). (d) Zeta potential vs. pH for the same diblock copolymer dispersions. (e) Intensity diameter vs pH for PGMA₅₅-PHPMA₁₆₆ (red circles), and (1:9 PCysMA₃₁ + PGMA₅₅)-PHPMA₁₇₈ (blue triangles). (d) Zeta potential vs. pH for the same diblock copolymer dispersions. (e) Intensity diameter vs pH for PGMA₅₅-PHPMA₂₃₀ vesicles (black squares), (1:9 PCysMA₃₁ + PGMA₅₅)-PHPMA₃₀₀ (red circles), and (1:9 PGSHMA₂₄ + PGMA₅₅)-PHPMA₃₀₀ (blue triangles). (f) Zeta potential vs. pH for the same diblock copolymer dispersions.