Supporting Information

Thiol-reactive Passerini-methacrylates and Polymorphic Surface Functional Soft Matter Nanoparticles via Ethanolic RAFT Dispersion Polymerization and Postsynthesis Modification

Yiwen Pei, Janina-Miriam Noy, Peter J. Roth, and Andrew B. Lowe*

School of Chemical Engineering, Centre for Advanced Macromolecular Design, UNSW Australia, University of New South Wales, Kensington, Sydney, NSW 2052, Australia.

profandrewblowe@gmail.com

Experimental Section

Materials. All reagents were purchased from the Sigma-Aldrich Chemical Company and used as received unless otherwise noted. 2,2'-Azobis(isobutyronitrile) (AIBN) was purified by two recrystallizations from methanol. 2-(Dimethylamino)ethyl methacrylate (DMAEMA), 3-phenylpropyl methacrylate (PPMA) was passed through a basic Al₂O₃ column to remove inhibitors prior to use. Novel pentafluorophenyl (PFP)-containing methacrylic monomers, 2-(cyclohexylamino)-2-oxo-1-(perfluorophenyl)ethyl methacrylate (CyAFPEMA), 2-((2-ethoxy-2-oxoethyl)amino)-2-oxo-1-(perfluorophenyl) ethyl methacrylate (EAFPEMA) and 2-(*tert*-butylamino)-2-oxo-1-(perfluorophenyl)ethyl methacrylate (*t*BAFPEMA), were prepared via the Passerini reaction as described recently by Roth *et al.*^{1,2} and 4-Cyanopentanoic acid dithiobenzoate (CPADB) was prepared according to a procedure described elsewhere.³

Copolymer Characterizations

Size exclusion chromatography (SEC) was performed on a Shimadzu system with four phenogel columns (10^2 , 10^3 , 10^4 , 10^6 Å pore size) in *N*, *N*-dimethylacetamide (DMAc) operating at a flow rate of 1 mL min⁻¹ at 40 °C using a RID-10A refractive index detector. Chromatograms were analyzed by Cirrus SEC software version 3.0. The system was calibrated with a series of narrow molecular weight distribution polystyrene standards with molecular weights ranging from 0.58-1820 kg mol⁻¹.

Transmission electron microscopy (TEM) imaging was conducted at 100 kV on a JEOL1400 TEM instrument. To prepare TEM samples, 5.0 μ L of a dilute copolymer solution (0.7 w/w %) was deposited onto a copper grid (ProSciTech), stained with uranyl acetate (0.2 w/w % in water), and dried under ambient conditions.

DLS measurements were performed using a Malvern Instrument Zetasizer Nano Series instrument equipped with a 4 mW He-Ne laser operating at 633 nm and an avalanche photodiode (APD) detector. The scattered light was detected at an angle of 173°. For sample preparation, 0.1 mL of the parent RAFTDP solution was diluted with 2.9 mL of ethanol and the solution then stirred for 5 min prior to double filtration through 0.45 µm nylon filters.

Fourier transform infrared (FTIR) spectroscopy was conducted on a Bruker IFS 66/S

instrument under attenuated total reflectance (ATR) and the results were analyzed utilizing OPUS software version 4.0.

NMR characterization analyses were conducted using a Bruker Avance III 300 spectrometer (300.13 MHz for ¹H nuclei and 282 MHz for ¹⁹F nuclei). The internal solvent signal of CDCl₃ was utilized for reference ($\delta = 7.26$ ppm). The number average molecular weight, $\overline{M}_{n,NMR}$, was calculated based on a full conversion of Passerini methacrylate (confirmed by ¹⁹F NMR) and the average degree of polymerization, X_n of PDMAEMA in RAFT macroCTAs. X_n of PDMAEMA was estimated based on the integral values of the signals at $\delta = 4.06$ ppm and 7.30-7.90 ppm, as shown in eqn (1).

$$\bar{X}n (PDMAEMA) = \frac{5 \times I (4.60 \, ppm)}{2 \, \times \, I \, (7.30 - 7.90 \, ppm)} \tag{1}$$

The absolute molecular weight, $M_{n,NMR}$, and X_n of block copolymers were calculated based on \bar{X}_n of the PDMAEMA-Passerini macro-CTA and the integration ratio of the signal at $\delta = 7.10$ -7.50 ppm ($I_{7.10-7.50ppm}$, aryl protons of PPPMA) and those at 2.30 ppm ($I_{2.30ppm}$, methyl protons of PDMAEMA in RAFT macro-CTA), as shown in Figure 2-4 and eqn (2). We also compared the integration ratio between the methylene protons of the PDMAEMA block ($\delta = 4.20$ ppm) and the methylene protons of the PPPMA block ($\delta =$ 3.90 ppm) to obtain accurate polymer compositions.

$$Xn (PPPMA) = \frac{6 \times I (7.70 - 7.50 \, ppm)}{5 \times I (2.30 \, ppm)} Xn (PDMAEMA)$$
(2)

Figure S1. ¹H NMR spectra of DMAEMA-Passerini macro-CTAs (A) $P(DMAEMA_{36}-co-CyAFPEMA_2)$, (B) $P(DMAEMA_{29}-co-EAFPEMA_2)$ and (C) $P(DMAEMA_{31}-co-tBAFPEMA_2)$, recorded in CDCl₃, with peak assignments. Inset is an expanded region highlighting the presence of the phenyldithioester end group, benzylic and NH hydrogen.

Figure S2. (A) ¹H NMR spectrum of PFP-functional copolymer, P(DMAEMA₃₆-*co*-CyAFPEMA₂)-*b*-PPPMA₁₄₈ and (B) representative size exclusion chromatograms of the resulting polymer obtained by RAFTDP.

Figure S3. (A) ¹H NMR spectrum of PFP-functional copolymer, P(DMAEMA₂₉-co-EAFPEMA₂)-b-PPPMA₄₄ and (B) representative size exclusion chromatograms of the resulting polymers obtained by RAFTDP.

Figure S4. (A) ¹H NMR spectrum of PFP-functional copolymer, P(DMAEMA₃₁-*co-t*BAFPEMA₂)-*b*-PPPMA₉₅ and (B) representative size exclusion chromatograms of the resulting polymers obtained by RAFTDP.

Table S1. Summary of RAFTDP syntheses with macro-CTAs and PPMA as a comonomer in EtOH at 21 wt% and 70 °C. The NMR-determined average degree of polymerization (\bar{X}_n) of the PPMA block and absolute molecular weight are given along with the SEC-measured \bar{M}_n and dispersities, TEM morphology, TEM-measured diameter and DLS-measured hydrodynamic diameter and polydispersities.

	Conv.	PPMA	NMR	SEC	SEC	TEM	TEM	DLS	DLS
Macro-CIA	%	X _n	MW ^a	${ar M}_{ m n}^{ m b}$	$\boldsymbol{\mathcal{P}}_{\mathrm{M}}^{\mathrm{b}}$	morp. °	D ^d	D _h ^e	PDI
P(DMAEMA ₃₆ -co-CyAFPEMA ₂)	95	148	36,900	23,400	1.19	S+W	54.5	141.8	0.21
P(DMAEMA ₂₉ -co-EAFPEMA ₂)	96	44	14,300	17,300	1.19	S	41.2	53.4	0.17
P(DMAEMA ₂₉ -co-EAFPEMA ₂)	95	79	21,400	21,200	1.19	S+W	45.6	81.4	0.17
P(DMAEMA ₂₉ -co-EAFPEMA ₂)	92	91	23,900	22,900	1.24	W+V	234.3	215.0	0.21
P(DMAEMA ₃₁ - <i>co</i> - <i>t</i> BAFPEMA ₂)	91	48	15,700	16,200	1.18	S	47.0	45.8	0.18
P(DMAEMA ₃₁ - <i>co</i> - <i>t</i> BAFPEMA ₂)	95	80	22,300	19,600	1.23	S+W	53.2	137.1	0.19
P(DMAEMA ₃₁ - <i>co</i> - <i>t</i> BAFPEMA ₂)	95	87	23,700	19,900	1.21	S+W	54.9	190.1	0.19
P(DMAEMA ₃₁ -co-tBAFPEMA ₂)	92	95	25,200	21,300	1.23	W	55.1	223.4	0.19
P(DMAEMA ₃₁ - <i>co</i> - <i>t</i> BAFPEMA ₂)	87	131	32,700	25,800	1.21	W+V	275.3	230.7	0.79

^a As determined by end group analysis; ^b as measured in THF on a system calibrated with polystyrene standards; ^c S = spheres, W = worms, V = vesicles; ^d TEM-measured nanoparticle diameter in nm; ^e hydrodynamic diameter in nm.

Figure S5. Representative TEM images obtained for (A) $P(DMAEMA_{36}$ -*co*-CyAFPEMA₂)-*b*-PPPMA₁₄₈ and (B) $P(DMAEMA_{29}$ -*co*-EAFPEMA₂)-*b*-PPPMA_y copolymer nanoparticles synthesized at a total solids concentration of 21 wt% using RAFT dispersion polymerization in ethanol at 70 °C.

Table S2. Summary of thiol-*p*-fluoro postpolymerization modification performed in ethanol at 50 °C overnight (up to 2 days for the reaction with worm-like copolymers^c). Complete substitution was confirmed for all reactions by ¹⁹F NMR spectroscopy.

Entry	PFP-Functional Nano-Objects	Thiol	Base	Thiol/PFP	Thiol/Base	
1a						
1"	p[(DMAEMA ₂₉ -co-EAFPEMA ₂)-PPMA ₄₄]	2-mercaptoethanol	DBU	5	1	
2 ^a	p[(DMAEMA ₂₉ -co-EAFPEMA ₂)-PPMA ₄₄]	cysteamine hydrochloride	DBU	20	0.5	
20						
3ª	p[(DMAEMA ₃₁ - <i>co-t</i> BAFPEMA ₂)-PPMA ₄₈]	1-thio-β-D-glucose tetraacetate	Et ₃ N	20	1	
4 ^b	p[(DMAEMA ₃₁ - <i>co-t</i> BAFPEMA ₂)-PPMA ₈₀]	Captopril	DBU	5	0.5	
5 ^b	p[(DMAEMA ₃₁ - <i>co-t</i> BAFPEMA ₂)-PPMA ₈₀]	thiophenol	Et ₃ N	10	1	
6 ^c	p[(DMAEMA ₃₁ - <i>co-t</i> BAFPEMA ₂)-PPMA ₉₅]	1-thio-β-D-glucose tetraacetate	Et ₃ N	50	1	
			5			

^a Pure sphere phase; ^b Mixed spheres/worms phase; ^c Pure worm phase.

Figure S6. (a) ¹⁹F NMR spectra of the P[(DMAEMA₂₉-*co*-EAFPEMA₂)-*b*-PPMA₄₄] exhibiting *ortho*, *meta* and *para* signals associated with the PFP functionality in the Passerini repeat units; (b) after reaction of the spherical nanoparticles with 2-mercaptoethanol, and (c) after purification of the surface modified nano-spheres, with SEC traces before and after reaction shown inset.

Figure S7. (a) ¹⁹F NMR spectra of the P[(DMAEMA₂₉-*co*-EAFPEMA₂)-*b*-PPMA₄₄] exhibiting *ortho*, *meta* and *para* signals associated with the PFP functionality in the Passerini repeat units; (b) after reaction of the spherical nanoparticles with cysteamine hydrochloride, and (c) after purification of the surface modified nano-spheres, with SEC traces before and after reaction shown inset.

Figure S8. ¹⁹F NMR spectra of the (A) unmodified and (B) surface-modified mixed phased sphere/worm nano-objects by reacting $P[(DMAEMA_{31}-co-tBAFPEMA_2)-b-PPMA_{80}]$ with thiophenol, recorded in CDCl₃, with peak assignments, with SEC trace before and after reaction shown inset.

Figure S9. ¹⁹F NMR spectra of the (A) unmodified and (B) surface-modified mixed phased nano-objects by reacting $P[(DMAEMA_{31}-co-tBAFPEMA_2)-b-PPMA_{80}]$ with Captopril, recorded in CDCl₃, with peak assignments, with SEC trace before and after reaction shown inset.

Figure S10. (a) ¹⁹F NMR spectra of the P[(DMAEMA₃₁-*co-t*BAFPEMA₂)-*b*-PPMA₉₅] exhibiting *ortho*, *meta* and *para* signals associated with the PFP functionality in the Passerini repeat units; (b) after reaction of the spherical nanoparticles with 1-thio- β -D-glucose tetraacetate, and (c) after purification of the surface-functional worm-like copolymers, with SEC traces before and after reaction shown inset.

Figure S11. FT-IR spectra of unmodified block copolymer, $P[(DMAEMA_{31}-co-tBAFPEMA_2)-b-PPMA_{95}]$ (**a**, green) and surface modified nano-objects by reaction with 2-mercaptoethanol (**b**, pink), thiophenol (**c**, brown), Captopril (**d**, orange), 1-thio- β -D-glucose tetraacetate (**e**, purple), cysteamine hydrochloride (**f**, blue). The occurrence of amidation in the cysteamine-modified copolymer nanoparticles is evident from the disappearance of distinctive ester band (C=O stretch at ~1730 cm⁻¹) and clear appearance of the amide bands at ~3290 (N-H stretch), ~1640 (amide C=O stretching) and ~1530 cm⁻¹ (N-H bend).

Figure S12. ¹H NMR spectra of (A) the unmodified and (B) surface-modified spherical nano-objects by reacting P[(DMAEMA₂₉-*co*-EAFPEMA₂)-*b*-PPMA₄₄] with 2-mercaptoethanol, recorded in CDCl₃, with peak assignments.

Figure S13. ¹H NMR spectra of (A) the unmodified and (B) surface-modified mixed phased nano-objects by reacting $P[(DMAEMA_{31}-co-tBAFPEMA_2)-b-PPMA_{80}]$ with Captopril, recorded in CDCl₃, with peak assignments.

Figure S14. ¹H NMR spectra of (A) unmodified and (B) the surface-modified mixed phased nano-objects by reacting $P[(DMAEMA_{31}-co-tBAFPEMA_2)-b-PPMA_{80}]$ with thiophenol, recorded in CDCl₃, with peak assignments.

Figure S15. ¹H NMR spectra of (A) unmodified and (B) surface-modified spherical nano-objects by reacting P[(DMAEMA₃₁-*co-t*BAFPEMA₂)-*b*-PPMA₄₈] with 1-thio- β -D-glucose tetraacetate, recorded in CDCl₃, with peak assignments.

Figure S16. ¹H NMR spectra of (A) unmodified and (B) the surface-modified worm-like nano-objects by reacting P[(DMAEMA₃₁-*co-t*BAFPEMA₂)-*b*-PPMA₉₅] with 1-thio- β -D-glucose tetraacetate, recorded in CDCl₃, with peak assignments.

Reference:

(1) S. Schmidt, M. Koldevitz, J.-M. Noy, P. J. Roth. *Polym. Chem.*, **2014**, DOI: 10.1039/c4py01147c

(2) J.-M. Noy, M. Koldevitz, P. J. Roth. 2014, DOI: 10.1039/c4py01238k

(3) S. H. Thang, Y. K. Chong, R. T. A. Mayadunne, G. Moad and E. Rizzardo, *Tetrahedron Lett.*, **1999**, 40, 2435–2438