Electronic Supporting Information For

PyrrolophthalazineDione(PPD)-basedDonor-AcceptorPolymers as High PerformanceElectrochromicMaterials

Qun Ye,^{+,a} Wei Teng Neo,^{+,a,b} Tingting Lin,^a Jing Song,^a Hong Yan,^a Hui Zhou,^a Kwok Wei Shah,^a Soo Jin Chua,^{a,c} and Jianwei Xu^{a,d,*}

^a Institute of Materials Research and Engineering, A*STAR, 3 Research Link, Singapore 117602.

^b NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456.

^c Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583

^d Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543

⁺ These authors contribute equally to this work.

Contents

1. Spectroelectrochemical graphs of P1 and P3 devices	.2
2. Switching behavior of P1 and P3 devices	.3
3. Redox stability of P2 device d P3 devices	4
4. TD-DFT calculations details	5
5. NMR spectra of all new compounds	7

1.2 1.0 0.0V 0.5V 0.8V 0.8 Absorbance 1.0V 1.1V 0.6 1.2V .3V .4V 0.4 5V 1.6V 1.7V 0.2 1.8V 1.9V 0.0 2.0V 600 800 1000 1200 1400 400 1800 1600 Wavelength (nm)

1. Spectroelectrochemical graphs of P1 and P3 devices

Fig. S1 Spectroelectrochemical graphs of drop-cast P1 device at various applied potentials.

Fig. S2 Spectroelectrochemical graphs of drop-cast P3 device at various applied potentials.

2. Switching behavior of P1 and P3 devices

Fig. S3 Switching behaviour of P1 device between + 1.6 and -1.6 V.

Fig. S4 Switching behaviour of P3 device between + 1.6 and -1.6 V.

3. Redox stability of P2 device

Fig. S5 Stability study of **P2** spin-coated device by monitoring optical contrast as a function of number of cycles between + 1.6 and -1.6 V with a switching time of 15 s.

4. TD-DFT calculations details

D(2,1,22,23)	24.5197	D(3,4,29,30)	24.3949	D(24,25,36,40)	3.0877
D(6,1,22,26)	30.8908	D(5,4,29,33)	30.7244	D(26,25,36,37)	4.5267
D(31,32,51,55)	2.9535	D(38,39,66,70)	6.4649	D(53,54,74,78)	6.4224
D(33,32,51,52)	4.3784	D(40,39,66,67)	5.4345	D(55,54,74,75)	5.4012

Fig. S6 Torsional angles of optimized geometry of M1 monomer.

D(2,1,22,23)	24.6695	D(3,4,29,30)	24.9355	D(24,25,36,40)	3.3798
D(6,1,22,26)	30.9981	D(5,4,29,33)	31.5385	D(26,25,36,37)	4.8700
D(31,32,51,55)	3.7125	D(38,39,81,80)	6.5542	D(53,54,70,69)	6.7923
D(33,32,51,52)	5.2745	D(40,39,81,77)	5.4942	D(55,54,70,66)	5.6929

Fig. S7 Torsional angles of optimized geometry of M2 monomer.

D(2,1,22,23)	24.3403	D(3,4,29,30)	24.3757	D(24,25,36,40)	2.9858
D(6,1,22,26)	30.7083	D(5,4,29,33)	30.6459	D(26,25,36,37)	4.4106
D(31,32,51,55)	3.0517	D(38,39,66,70)	6.0886	D(53,54,81,85)	6.0562
D(33,32,51,52)	4.4650	D(40,39,66,67)	5.1324	D(55,54,81,82)	5.1028
D(68,69,73,74)	17.5027	D(83,84,88,89)	17.6000		
D(70,69,73,77)	17.5344	D(85,84,88,92)	17.6259		

Fig. S8 Torsional angles of optimized geometry of M3 monomer.

5. NMR spectra of all new compounds

Fig. S9 ¹H NMR spectrum of compound 3 (CDCl₃, room temperature).

Fig. S10¹³C NMR spectrum of compound 3 (CDCl₃, room temperature).

Fig. S11 ¹H NMR spectrum of compound 4 (CDCl₃, room temperature).

Fig. S12 ¹³C NMR spectrum of compound 4 (CDCl₃, room temperature).

Fig. S13 ¹H NMR spectrum of compound 5 (CDCl₃, room temperature).

Fig. S14 ¹³C NMR spectrum of compound 5 (CDCl₃, room temperature).

Fig. S15 ¹H NMR spectrum of compound P1 (CDCl₃, room temperature).

Fig. S16 ¹H NMR spectrum of compound P2 (CDCl₃, room temperature).

Fig. S17 ¹H NMR spectrum of compound P3 (CDCl₃, room temperature).