Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2015

Supplementary information for Synthesis of comb-like poly(ethyleneimine)s and their application in biomimetic silicification

Dong-Dong Yao, Ren-Hua Jin*

Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Yokohama 221-8686, Japan Corresponding author: R.-H. Jin, E-mail: <u>rhjin@kanagawa-u.ac.jp</u>

Fig. S1 ¹H NMR spectrum of crude polymerization product of CMS monomer before precipitation.

In detail, the conversion was calculated according to the relative integral area (S) by following formula:

%Conv. = $S_{\text{poly.}}/(S_a + S_{\text{poly.}}) *100\% = 63.7\%$, here, $S_{\text{poly.}} = [(S_4 + S_3 + S_b) - 0.5S_a]/2$.

Combined with the initial molar ratio of CMS monomer and RAFT agent CDB (100:1), the polymeric degree of PCMS was denoted as 64.

Fig. S2 ¹H NMR spectrum of crude polymerization product of MOZ (red line). In comparison, we also gave ¹H NMR data of pure MOZ monomer (black line). The proton signal disappeared in dash line part (red line), which indicated that the MOZ monomer reacted completely in this polymerization system.

Fig. S3 ¹H NMR spectra of PCMS initiator and P(CMS-*g*-PEI₆₉)₆₄ comb polymer. The proton signal b of initiating group (-CH₂Cl at 4.5 ppm) nearly completely disappeared after polymerization reaction for MOZ monomer.