## **Supporting Information for**

## Facile Synthesis of Polymethionine Oxides through Polycondensation of Activated Urethane Derivative of $\alpha$ -Amino Acid and their Application to Antifouling Polymer against Proteins and Cells

Shuhei Yamada,<sup>a</sup> Kazuhiro Ikkyu,<sup>b</sup> Kazuhiro Iso,<sup>b</sup> Mitsuaki Goto,<sup>a</sup> Takeshi Endo\*<sup>a</sup>

<sup>*a*</sup> Molecular Engineering Institute, Kinki University, 11-6 Kayanomori, Iizuka, Fukuoka 820-8555, Japan.

<sup>b</sup> JSR Life Sciences Corporation, 25 Miyukigaoka, Tsukuba, Ibaraki, 305-0841, Japan.
\*Corresponding author E-mail: tendo@moleng.fuk.kindai.ac.jp.



**Figure S1.** <sup>1</sup>H NMR spectrum of poly(DL-methionine) by polycondensation of **DL-Met** in the presence of n-BuNH<sub>2</sub> (entry 2 in Table 1)



**Figure S2.** SEC traces of poly(L-methionine) by polycondensation of L-Met(O) in the presence of *n*-BuNH<sub>2</sub> (entries 5-8, in Table 2)



**Figure S3.** SEC traces of poly(DL-methionine sulfone) by polycondensation of **DL-Met(O2)** in the presence of *n*-BuNH<sub>2</sub> (entries 1-5, in Table S1)

**Table S1.** Synthesis of poly(DL-methionine sulfone) by polycondensation of DL-Met(O2) in the presence of *n*-BuNH<sub>2</sub>

| entry | feed ratio<br>[ <b>DL-Met(O2</b> )] <sub>0</sub><br>/[ <i>n</i> -BuNH <sub>2</sub> ] <sub>0</sub> | reaction<br>time (h) | conv.<br>(%) <sup>a</sup> | yield<br>(%) <sup>b</sup> | $M_{ m n}$ <sup>c</sup> | $M_{\rm w}/M_{\rm n}^{\rm c}$ |
|-------|---------------------------------------------------------------------------------------------------|----------------------|---------------------------|---------------------------|-------------------------|-------------------------------|
| 1     | 5                                                                                                 | 5                    | >99                       | 95                        | 1,400                   | 1.41                          |
| 2     | 10                                                                                                | 12                   | >99                       | 93                        | 2,500                   | 1.36                          |
| 3     | 25                                                                                                | 20                   | >99                       | 98                        | 7,300                   | 1.31                          |
| 4     | 50                                                                                                | 24                   | >99                       | 92                        | 15,000                  | 1.14                          |
| 5     | 100                                                                                               | 48                   | >99                       | 95                        | 28,000                  | 1.21                          |

<sup>a</sup> Calculated by <sup>1</sup>H NMR spectra

<sup>b</sup> Ether-insoluble parts

<sup>c</sup> Estimated by SEC (eluent: DMF solution of LiBr (10 mM), calibrated by Polystyrene standards)

**Table S2.** Synthesis of poly(L-methionine sulfone) by polycondensation of L-Met(O2) in the presence of *n*-BuNH<sub>2</sub>

| entry | feed ratio<br>[ <b>L-Met(O2</b> )] <sub>0</sub><br>/[ <i>n</i> -BuNH <sub>2</sub> ] <sub>0</sub> | reaction<br>time (h) | conv.<br>(%) <sup>a</sup> | yield<br>(%) <sup>b</sup> | $M_{ m n}$ <sup>c</sup> | $M_{ m w}/M_{ m n}^{ m c}$ |
|-------|--------------------------------------------------------------------------------------------------|----------------------|---------------------------|---------------------------|-------------------------|----------------------------|
| 1     | 5                                                                                                | 5                    | >99                       | 94                        | -                       | -                          |
| 2     | 10                                                                                               | 12                   | >99                       | 96                        | -                       | -                          |
| 3     | 25                                                                                               | 48                   | >99                       | 98                        | -                       | -                          |

<sup>a</sup> Calculated by <sup>1</sup>H NMR spectra

<sup>b</sup> Ether-insoluble parts

<sup>c</sup> Estimated by SEC (eluent: DMF solution of LiBr (10 mM), calibrated by Polystyrene standards)

 $M_{\rm n}$  and  $M_{\rm w}/M_{\rm n}$  were not determined due to a low solubility of polypeptide for an eluent.



**Figure S4.** MALDI-TOF mass result of poly(L-methionine sulfone) obtained from polycondensation of L-Met(O2) in the presence of n-BuNH<sub>2</sub> (entry 3, in Table S2)

| entry | urethane<br>derivative | feed ratio<br>[ <b>M</b> ] <sub>0</sub> /[amine] <sub>0</sub> | reaction<br>time (h) | conv.<br>(%) <sup>a</sup> | yield<br>(%) <sup>b</sup> | $M_{ m n}$          | $M_{ m w}/M_{ m n}$ |
|-------|------------------------|---------------------------------------------------------------|----------------------|---------------------------|---------------------------|---------------------|---------------------|
| 1     | DL-Met                 | 10                                                            | 10                   | >99                       | 82                        | 13700 <sup>c</sup>  | 1.19 <sup>c</sup>   |
| 2     | DL-Met                 | 25                                                            | 20                   | >99                       | 92                        | 16,900 <sup>c</sup> | 1.20 <sup>c</sup>   |
| 3     | DL-Met                 | 50                                                            | 24                   | >99                       | 87                        | 23,000 <sup>c</sup> | 1.18 <sup>c</sup>   |
| 4     | DL-Met(O))             | 10                                                            | 10                   | >99                       | 90                        | 5,600 <sup> d</sup> | 1.17 <sup>d</sup>   |
| 5     | DL-Met(O)              | 25                                                            | 20                   | >99                       | 91                        | 6,460 <sup>d</sup>  | 1.21 <sup>d</sup>   |
| 6     | DL-Met(O)              | 50                                                            | 24                   | >99                       | 93                        | 8,200 <sup>d</sup>  | 1.32 <sup>d</sup>   |
| 7     | DL-Met(O2)             | 10                                                            | 10                   | >99                       | 89                        | 12,800 <sup>c</sup> | 1.12 <sup>c</sup>   |
| 8     | DL-Met(O2)             | 25                                                            | 15                   | >99                       | 93                        | 22,000 <sup>c</sup> | 1.12 <sup>c</sup>   |
| 9     | DL-Met(O2)             | 50                                                            | 24                   | >99                       | 95                        | 29,000 <sup>c</sup> | 1.14 <sup>c</sup>   |

**Table S3.** Synthesis of diblock copolymer through polycondensation of urethane derivative in the presence of an amine-terminated poly(ethylene glycol) (PEG-NH<sub>2</sub>)

<sup>a</sup> Calculated by <sup>1</sup>H NMR spectra

<sup>b</sup> Ether-insoluble parts

<sup>c</sup> Estimated by SEC (eluent: DMF solution of LiBr (10 mM), calibrated by Polystyrene standards)

<sup>d</sup> Estimated by SEC (eluent: PBS, calibrated by Poly(ethylene glycol) standards)



**Figure S5.** SEC traces of poly(DL-methionine) by polycondensation of **DL-Met** in the presence of PEG-NH<sub>2</sub> ( $M_n = 5,300$  and PDI =1.04).



**Figure S6.** SEC traces of poly(DL-methionine) by polycondensation of DL-Met(O) in the presence of PEG-NH<sub>2</sub> ( $M_n = 5,000$  and PDI =1.06).



**Figure S7.** SEC traces of poly(DL-methionine) by polycondensation of DL-Met(O2) in the presence of PEG-NH<sub>2</sub> ( $M_n = 5,300$  and PDI =1.04).

After polycondensation, the desired oligopeptide with a polymerizable group at the terminal was isolated as ether-insoluble parts in good yield (85%).



**Figure S8.** <sup>1</sup>H NMR spectrum of oligo(L-methionine sulfoxide) with styrene group at the terminal prepared by polycondensation of L-Met(O) in the presence of 4-vinylbenzylamine.



**Figure S9.** MALDI-TOF mass result of oligo(L-methionine sulfoxide) with styrene group at the terminal.

Radical polymerization of oligopeptide with styrene group was performed in aqueous solution (10 wt%) with V-501 (5 mol%) as an initiator at 70 °C for 15 hours. The resultant reaction mixture was purified by a dialysis in cellulose tube ( $M_w$  cutoff = 3,500). Freeze drying of the aqueous solution gave a desired polymer as a white powder in high yield (94%)



**Figure S10.** <sup>1</sup>H NMR spectrum of polystyrene bearing oligo(L-methionine sulfoxide), **PSt-PLMet(O)**.

The effect of terminal amine on the side chain on cytotoxicity against F9 cells was also evaluated using CCK-8 assay. Each polystyrene bearing oligo(L-methionine sulfoxide) showed high biocompatibility even in the concentration of 1mg/mL.



**Figure S11.** Calculation of F9 cells survival percentage in the presence of polystyrene bearing oligo(L-methionine sulfoxide) (1mg/mL) by CCK-8 assay.