Supplementary Information

Dual role for alkali metal cations in enhancing of low-temperature radical polymerization of *N*,*N*-dimethylacrylamide

Tomohiro Hirano, Tatsuya Saito, Yoshitaka Kurano, Yohei Miwa, Miyuki Oshimura and Koichi Ute

Fig. S1 Relationship between the $[LiNTf_2]_0/[DMAAm]_0$ ratio and the polymer yield for the polymerization of DMAAm in toluene at -40 °C for 10 sec in the presence of LiNTf₂.

Fig. S2 ¹H NMR spectra of the main-chain methylene groups of poly(DMAAm)s obtained in toluene at -40 °C for 10 sec in the presence of LiNTf₂: $[LiNTf_2]_0 = (a) 0.0 \text{ mol } L^{-1}$, (b) 0.1 mol L^{-1} (c) 0.5 mol L^{-1} , and (d) 1.0 mol L^{-1} . The peaks marked with an asterisk (*) are impurities.

Fig. S3 ¹H NMR spectra of the main-chain methylene groups of poly(DMAAm)s obtained at -40 °C in the presence or absence of LiNTf₂.

Fig. S4 Changes in the ¹³C NMR chemical shifts of the C=O group and differences in the ¹H NMR chemical shift of the H_1 and H_2 protons of the vinylidene group in DMAAm resulting from variations in the [LiNTf₂]₀/[DMAAm]₀ ratio.

Fig. S5 Changes in the chemical shifts of the vinylidene proton *cis* to the C=O group of DMAAm in the presence of LiNTf₂ (•), NaNTf₂ (•) and KNTf₂ (•) ([DMAAm]₀ + [MNTf₂]₀ = 0.25 mol L⁻¹, in CD₃CN at 0 °C). The plot marked (×) denotes the chemical shift of DMAAm alone at the corresponding concentration.

Fig. S6 ¹H NMR spectra of the main-chain methylene groups of poly(DMAAm)s obtained at -40 °C in the presence of LiCl or LiOTf. The peaks marked with an asterisk (*) are impurities.

Fig. S7 ¹H NMR spectra of the main-chain methylene groups of poly(DMAAm)s obtained at -40 °C in the presence of NaNTf₂ or KNTf₂.