Supporting Information

Stimuli Responsive Nanostructured Porous Network from Triblock Copolymer Self-assemblies

Zineb Mouline, Mona Semsarilar, Andre Deratani, Damien Quemener*

IEM (Institut Europeen des Membranes), UMR 5635 (CNRS-ENSCM-UM2), Universite Montpellier 2, CC047, Place E. Bataillon, 34095 Montpellier, France.

Figure S1. DOSY spectra of polystyrene (PS) macro-CTA polymerized by RAFT obtained in DMSO-

d₆.

Figure S2. Gel permeation chromatography trace obtained for PS macro-CTA polymerized by RAFT.

Figure S3. DOSY spectra of polystyrene-*b*-poly (4-vinylphenyl boronic acid)-*b*-polystyrene (PS-PPBA-PS) triblock copolymer polymerized by RAFT obtained in DMSO-d₆.

Figure S4. Gel permeation chromatography trace obtained for polystyrene-*b*-poly (4-vinylphenyl boronic acid)-*b*-polystyrene (PS-PPBA-PS) triblock copolymer polymerized by RAFT.

Figure S5. Superposed ¹H NMR spectra of polystyrene macro-CTA and polystyrene-*b*-poly (4-vinylphenyl boronic acid)-*b*-polystyrene obtained in DMSO-d₆.

Equation S1. Hagen-Poiseuille equation

$$J_i = \frac{N_i \pi d_i^4 \Delta P}{128 \eta \delta}$$

where J_i is the solvent flux (L. m⁻². h⁻¹), N_i the number of perforations per unit area, d_i the perforation diameter, δ the length of the cylindrical perforation (taken equal to the membrane thickness), η the solvent viscosity (1.10⁻³ Pa.s) and ΔP the relative water pressure.

Figure S6. Water flux (Jv) at pH 7 with increasing pressure (closed black squares) and the corresponding nonlinear model fit with function power-4 (Red line).