Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information for

Upper or Lower Critical Solution Temperature, or Both? Studies on Cationic Copolymers of

N-isopropylacrylamide

Erno Karjalainen, Vladimir Aseyev, and Heikki Tenhu

Laboratory of Polymer Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland

Figure S1. NMR-spectrum of CP-17 in D₂O

Figure S2. NMR-spectra of the zero sample (**black**) and conversion sample (**red**) of CP-17 in D_2O .

Figure S3. AMPTMA-content in the copolymer (F) as a function of AMPTMA-content in the feed (f(NMR)) as analyzed with NMR spectroscopy for the studied copolymers (\blacksquare), copolymers without initial bubbling and three hours of reaction time (\bullet), copolymers synthesized using metallic copper instead of CuCl at 25 °C (\blacktriangle), at 40 °C (\bigtriangledown) or at 50 °C (\diamond). The line marks the theoretical curve with F=f(NMR).

Figure S4. Relative difference between AMPTMA-content in the feed (f(NMR)) and in the purified copolymer (F) as analyzed with NMR spectroscopy for the studied copolymers (\blacksquare), copolymers without initial bubbling and three hours of reaction time (\bullet), copolymers synthesized using metallic copper instead of CuCl at 25 °C (\blacktriangle), at 40 °C (\bigtriangledown) or at 50 °C (\blacklozenge). The line marks the theoretical curve with F=f(NMR).

Figure S5. Illustration of definitions used in this study. T_{cL} as an intersection of two tangents from heating curve of CP-8 in 1 mM LiNTf₂ without any NaCl (red) and T_{cU} as an intersection of two tangents from cooling curve of PAMPTMA-1 in 100 mM NaCl with 6 mM LiNTf₂ (blue).

Figure S6. Cooling curves of PAMPTMA-1 in water with various amounts of LiNTf₂. The LiNTf₂-concentrations are given as mM above each curve.

Figure S7. Cooling curves for PAMPTMA-1 as 1 mg/mL solution in 100 mM NaCl with various concentrations of LiNTf₂ (written as mM next to the curves).

Figure S8. TcU of PAMPTMA in 100 mM NaCl with various concentrations of LiNTf2 as a function of polymer concentration. The LiNTf₂ concentration is given above each series.

Figure S9. T_{cU} on both cooling (\blacksquare) and heating (\blacktriangle) of PAMPTMA-1 in 500 mM NaCl with 10 mM LiNTf₂ over three cycles. The measurement has been started with cooling.

Figure S10. Δ H as function of total concentration of salts for 1 mg/mL PNIPAM-1 solutions containing LiNTf2 with no added NaCl (**•**), with 100 mM NaCl (**•**), with 250 mM NaCl (**•**), with 500 mM NaCl (**•**), with 500 mM NaCl (**•**). The solid black line connects the points with only NaCl as the added salt.

Figure S11. The micro-DSC-thermograms for the PNIPAm-1-series with 500 mM NaCl. The total concentration of salts is marked as mM to each peak.

Figure S12. T_{cL} of CP-8 as a function of LiNTf₂-concentration with no added NaCl (\blacksquare), with 100 mM NaCl (\bullet), with 250 mM NaCl (\blacktriangle), with 500 mM NaCl (\blacktriangledown), and with 750 mM NaCl (\blacklozenge). The lines are to guide the eye.

Figure S13. T_{cL} of 1 mg/mL solution of CP-26 as a function of LiNTf₂-concentration with no added NaCl (\bullet), with 100 mM NaCl (\bullet), with 250 mM NaCl (\blacktriangle), with 500 mM NaCl (\checkmark), and with 750 mM NaCl (\blacklozenge). The lines are to guide the eye.

Figure S14. Transmittance as a function of temperature for 1 mg/mL CP-8-solutions with different amounts of LiNTf₂ and with 500 mM NaCl. LiNTf₂ concetration is written next to each curve.

Figure S15. T_{cL} as a function of polymer concentration for CP-8 in 2 mM LiNTf₂ without NaCl (**■**) and for copolymer 8 in 250 mM NaCl with 10 mM LiNTf₂ (•).

Figure S16. T_{max} of 1 mg/mL solution of CP-8 as a function of LiNTf₂-concentration with no added NaCl (\bullet), with 100 mM NaCl (\bullet), with 250 mM NaCl (\blacktriangle), with 500 mM NaCl (\checkmark), and with 750 mM NaCl (\blacklozenge). The lines are to guide the eye.

Figure S17. T_{max} of 1 mg/mL solution of CP-17 as a function of LiNTf₂-concentration with no added NaCl (\bullet), with 100 mM NaCl (\bullet), with 250 mM NaCl (\blacktriangle), with 500 mM NaCl (\checkmark), and with 750 mM NaCl (\blacklozenge). The lines are to guide the eye.

Figure S18. T_{max} of 1 mg/mL solution of CP-26 as a function of LiNTf₂-concentration with 100 mM NaCl (•), with 250 mM NaCl (\blacktriangle), with 500 mM NaCl (\blacktriangledown), and with 750 mM NaCl (\blacklozenge). The lines are to guide the eye.

Figure S19. TcL (**black**), TcU on heating (**red**) and TcU on cooling (**blue**) for copolymer 46 in 500 mM NaCl with 14 mM LiNTf₂. The lines are to guide the eye.

Figure S20. Micro-DSC-thermograms of PNIPAm-1 in 500 mM NaCl. The red line shows the initial measurement. The stabilization times between the measurements for the black lines in the order of increasing onset of the peak: 4 hour, 8 hours, 12 hours, and 16 hours. All the thermograms are from heating runs.

Figure S21. Micro-DSC-thermograms of CP-8 in 10 mM LiNTf₂ with no NaCl. The red line shows the initial measurement. The stabilization times between the measurements for the black lines in the order of increasing onset of the peak: 1 hour, 2 hours, 4 hours, 8 hours, and 12 hours. All the thermograms are from heating runs.

Figure S22. Micro-DSC-thermograms of PNIPAm-1 in 500 mM NaCl with fast cooling. The red line shows the initial measurement. The black lines show measurements with stabilization time of 4 hours, 8 hours, and 12 hours between the measurements. All the thermograms are from heating runs.

Figure S23. Micro-DSC-thermograms of CP-8 in 10 mM LiNTf₂ with no NaCl and with fast cooling. The red line shows the initial measurement. The black lines show measurements with stabilization time of 1 hour, 2 hours, 4 hours, and 8 hours between the measurements. All the thermograms are from heating runs.

Figure S24. T_{cL} (**black**) and T_{cU} on heating (**red**) as a function of LiNTf₂-concentration for CP-46 in 250 mM NaCl (\blacktriangle) and 500 mM NaCl (\bigtriangledown). After the initial measurement (filled symbols) the samples have been quickly cooled back to 5 °C and the measurement has been repeated (open symbols). The lines are to guide the eye.