Supporting Information to:

Ring-opening Polymerization of a 2,3-Disubstituted Oxirane Leading to a Polyether Having a Carbonyl-Aromatic π -Stacked Structure

Maia Merlani^{a,b}, Yasuhito Koyama^a, Hiroyasu Sato^c, Li Geng^a, Vakhtang Barbakadze^b, Bezhan Chankvetadze^d, Tamaki Nakano^{*a}

^aCatalysis Research Center (CRC) and Graduate School of Chemical Sciences and Engineering, Hokkaido University, N 21, W 10, Kita-ku, Sapporo 001-0021, Japan. Email:tamaki.nakano@cat.hokudai.ac.jp; Fax: +81-11-7069156; Tel: +81-11-7069155

^bKutateladze Institute of Pharmacochemistry, Tbilisi State Medical University, 36 str. P. Sarajishvili, 0159 Tbilisi, Georgia

^cRigaku Corporation 4-14-4, Sendagaya, Shibuya-Ku, Tokyo 151-0051, Japan

^dDepartment of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Ave 1, 0179 Tbilisi, Georgia

> *To whom correspondence should be addressed (E-mail: tamaki.nakano@cat.hokudai.ac.jp)

Contents	
1. Experimental section	2
2. IR spectra of MCDMPO and poly(MCDMPO)	5
3. ¹ H- ¹³ C NMR spectra of MCDMPO and ¹³ C NMR spectrum of poly(MCDMPO)	7
4. Thermal analyses of poly(MCDMPO)	11
5. MD simulations	12
6. References for 1-5	14
7. Crystal data	15

Experimental Section

Measurements

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were recorded on a JEOL JNM-ESC400 spectrometer using CDCl₃ as a solvent, calibrated using tetramethylsilane as the internal standard. SEC analyses were carried out using a chromatographic system consisting of a Hitachi L-7100 chromatographic pump, a Hitachi L-7420 UV detector (254 nm), and a Hitachi L-7490 RI detector equipped with TOSOH TSK gel G3000H HR and G6000H HR columns (30 x 0.72(i.d.) cm) connected in series (eluent THF, flow rate 1.0 mL/min). SEC-VISC-RALLS analyses were performed using Wyatt Technology DAWN EOS-N MALLS detector and Viscotek Model TDA300 on-line RI and viscometric detectors. Right-angle scattering information was obtained from the MALLS detector and integrated into the TDA detector system to calculate molar masses and Mark–Houwink–Sakurada coefficients. FT–IR spectra were measured using a ThermoFischer Scientific Nexus 870 spectrometer. Differential scanning calorimetry (DSC) analyses were performed on Rigaku Thermo plus TG8120 and DSC8230 apparatuses using Thermo plus 2 software for data analyses. Melting points were determines on Yanaco (model MP-S3) apparatus.

MD simulation

Molecular mechanics structure optimization was effected using the COMPASS¹ force field implemented in the Discover module of the Material Studio 2.0 (Accelrys) software package with the Fletcher-Reeves² conjugate gradient algorithm until the RMS residue went below 0.01 kcal/mol/Å. Molecular dynamic simulation was performed under a constant NVT condition in which the numbers of atoms, volume, and thermodynamic temperature were held constant. Berendsen's thermocouple³ was used for coupling to a thermal bath. The step time was 1 fs and the decay constant was 0.1 ps. Conformations obtained through MD simulation were saved in trajectory files at every 5 or 10 ps and were optimized by MM simulation.

Materials

 CH_2Cl_2 (Kanto Chemical) and toluene (Kanto Chemical) were distilled over CaH_2 and stored with MS 4A (Wako). 2-Ethoxycarbonyl-3-phenyloxirane (ethyl 3-phenylglycidate) (Sigma-Aldrich) and $BF_3 \cdot OEt_2$ (Kanto Chemical) were distilled over CaH_2 under reduced pressure. Methanol (Wako) was dehydrated using Mg. Veratraldehyde (TCI), methyl chloroacetate (TCI), trifluoromethanesulfonic anhydride (TCI), acetic acid (Wako), diethyl ether (Wako), CHCl₃ (Wako), hexane (Wako), ethyl acetate (Wako), NaHCO₃ (Wako), MgSO₄ (Wako), Tf_2O (Wako), and CaH_2 (Wako) were used as obtained. For preparative silica-gel chromatography, Silica Gel 60N (spherical, neutral; 63~210 mm) (Kako Chemical) was used.

Synthesis of 2-methoxycarbonyl-3-(3,4-dimethoxyphenyl)oxirane (MCDMPO) (methyl 3-(3,4-dimethoxyphenyl)glycidate) (Scheme S1)

A solution of veratraldehyde (2.99 g, 18 mmol) and methyl chloroacetate (2.92 g, 27 mmol) was added to a suspension of Na (0.69 g, 27 mmol) in dehydrated methanol (9.0 mL) at -10 °C during a period of 30 min. The mixture was stirred at -5 °C for 2 h and then at room temperature for 3 h. The mixture was poured into 50 mL ice water containing acetic acid (0.2 mL). Crude products precipitated as a white powder, which was collected by filtration, washed with water, and dried in vacuo. The crude material was recrystallized from diethyl ether to yield MCDMPO (4.28 g, 18 mmol, 50%) as a white solid (m.p. 65–66 °C [lit.⁴ 66–67 °C]); IR (KBr) ν 3007, 2960, 2846, 1726, 1616, 1599, 1524, 1443, 1309, 1273,1231, 1147, 1025, 871, 824, 776, 757 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C) δ 3.49 (d, J = 1.4 Hz, 1H), 3.82 (s, 3H), 3.88 (s, 3H), 4.06 (d, J = 1.4 Hz, 1H), 6.71 (d, J = 8.3 Hz, 1H), 6.82 (d, J = 2.0 Hz, 1H), 6.88 (dd, J = 8.3, 2.0 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃, TMS, 25 °C) δ 52.7, 55.9, 56.0, 56.7, 58.7, 108.2, 111.1, 119.0, 127.2, 149.3, 149. 8, 168.8 ppm.

Scheme S1. Synthesis of MCDMPO.

Polymerization of MCDMPO (run 7 in Table 1)

To a solution of MCDMPO (0.200 g, 0.84 mmol) in dry CH_2Cl_2 (0.8 mL) at 0 °C was added $BF_3 \cdot OEt_2$ (5.0 µL, 20% solution in CH_2Cl_2) with stirring under nitrogen atmosphere. The reaction mixture was stirred at 0 °C for 5 h, quenched with methanol (0.2 mL), and concentrated in vacuo. The obtained product was dissolved in 2.0 mL of CHCl₃ and precipitated into a large excess of hexane (100 mL). The hexane-insoluble and -soluble parts were separated with a centrifuge. Hexane-insoluble part: 0.190 g, (95.1%); IR (KBr) ν 3010, 2950, 2845, 1748, 1607, 1597, 1518, 1466, 1424, 1266, 1202, 1140, 1027, 872, 815, 765 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C) δ 3.82 (brd, 11H), 6.73 (brd, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃, TMS,

25 °C) δ 51.9, 56.0, 80.8–82.0 (brd), 110.4, 120.8, 128.8, 148.9, 170.4 ppm; M_n 1350, M_w 3350, M_w/M_n 2.48 (estimated by SEC based on PS standards); M_n 8700, M_w 8950, M_w/M_n 1.02 (estimated by SEC-VISC-RALS); T_m 88.1 °C ; T_{d5} 263.4 °C; T_{d10} 285.3 °C.

Synthesis of diethyl 3,6-diphenyl-1,4-dioxane-2,5-dicarboxylate I

To a solution of 2-ethoxycarbonyl-3-phenyloxirane (ethyl 3-phenylglycidate) (1.92 g, 10 mmol) in dry toluene (5.0 mL), BF₃·OEt₂ (0.12 mL, 1.0 mmol) was added and reaction mixture was heated at 110 °C under nitrogen for 12 h, neutralized with sat. aq. NaHCO₃ solution and extracted with ethyl acetate. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. The crude material was first purified by silica-gel column chromatography with a mixture of ethyl acetate and *n*-hexane (1/10, v/v) as eluent and then was recrystallized from Et₂O : hexane (1:2) to afford white crystals of compound **I** (m.p.154–155 °C). Yield: 0.49 g, 13%. IR (KBr) υ : 3071, 3038, 2974, 2924, 1744, 1479, 1415, 1351, 1271, 1029, 758, 701. ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C,): δ 0.97 (t, 3H, *J* = 6.8 Hz), 3.96 (q, 2H, *J* = 6.8 Hz), 4.39 (d, 1H, *J* = 9.6 Hz), 4.84 (d, 1H, *J* = 9.6 Hz), 7.3–7.5 (m, 10H); ¹³C NMR (100 MHz, CDCl₃, TMS, 25 °C): δ 13.81, 61.19, 79.56, 81.15, 127.61, 128.48, 129.12, 135.56, 167.66. MS (ESI) m/z: 407 (M⁺+Na).

Synthesis of ethyl 2-benzyl-4-hydroxy-5-oxo-3-phenyl-2,5-dihydrofuran-2-carboxylate II

To a solution of 2-ethoxycarbonyl-3-phenyloxirane (ethyl 3-phenylglycidate) (1.92 g, 10 mmol) in dry toluene (5.0 mL), Tf₂O (0.282 g, 1.0 mmol) was added and resultant mixture was heated at 110 °C under nitrogen for 12 h, neutralized with sat. aq. NaHCO₃ solution and extracted with ethyl acetate. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. The crude material was first purified by silica-gel column chromatography with a mixture of ethyl acetate and *n*-hexane (1/10, v/v) as eluent and was then recrystallized from Et₂O : hexane (1:2) to afford white crystals of compound **II** (m.p. 141–142 °C [lit.⁵ 141.0–141.3 °C]). Yield: 3.03 g, 89.8 %. IR (KBr) υ : 3313, 3063, 2963, 1739, 1671, 1498, 1397, 1184, 1100, 1008, 760, 704. ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): δ 1.23 (t, 3H, *J* = 7.2 Hz), 3.56 (d, 2H, *J* = 10.8 Hz), 3.67 (d, 2H, *J* = 10.8 Hz), 4.27 (q, 2H, *J* = 7.2 Hz), 6.12 (s, 1H), 7.09–7.69 (m, 10H); ¹³C NMR (100 MHz, CDCl₃, TMS, 25 °C): δ 13.99, 39.21, 63.09, 86.14, 96.14, 127.38, 127.76, 128.08, 128.89, 129.12, 129.42, 129.57, 130.48, 132.79, 138.52, 169.01. MS (ESI) m/z: 339 (M⁺¹).

IR spectra

Figure S1. IR spectrum of MCDMPO (KBr).

Figure S2. IR spectrum of poly(MCDMPO) (run 7 in Table 1) (KBr).

Figure S3. IR spectrum of I (KBr).

Figure S4. IR spectrum of II (KBr).

NMR spectra

poly(MCDMPO) (run 7 in Table 1) (C) (KBr) [100 MHz, 23°C, CDCl₃].

Figure S6. ¹H NMR spectrum of 2-ethoxycarbonyl-3-phenyloxirane [400 MHz, CDCl₃, 25 °C].

Figure S7. ¹H NMR spectrum of I [400 MHz, CDCl₃, 25 °C].

Figure S8. ¹H NMR spectrum of **II** [400 MHz, CDCl₃, 25 °C]. The signal at 1.7 ppm has been assigned to water but it might be based on some impurity whose identity is not known.

Figure S9. ¹³C NMR spectrum of I [100 MHz, CDCl₃, 25 °C].

Figure S10. ¹³C NMR spectrum of II [100 MHz, CDCl₃, 25 °C].

TGA profiles

Figure S11. TGA profile of poly(MCDMPO) (run 7 in Table 1) (N₂ atmosphere, heating rate 10 °C/min). $T_{d5} = 263.4^{\circ}$ C, $T_{d10} = 285.3^{\circ}$ C.

DSC profiles

Figure S12. $T_g = 79.3^{\circ}$ C, $T_m = 88.1^{\circ}$ C, $T_g = 81.4^{\circ}$ C, DSC profiles of poly(MCDMPO) (run 7 in Table 1) obtained on second heating (left) and on second cooling (right), (N₂: atmosphere, 20 mL/min, -25 °C-100 °C, heating/ cooling rate = 5 °C /min).

MD Simulations

Figure S13. Structures obtained through MD simulations for 5 nsec for at 297 K (S,S)-20-mer (A), (S,S)/(R,R)-20-mer (B), (R,S)-20-mer (C), (R,S)/(S,R)-20-mer (D), and (S,S)/(R,R)/(R,S)/(S,R)-20-mer (E). In A-E, white, gray, and red correspond to H, C, and O, respectively, and pink the main chain. Blue arrows indicate carbonyl-aromatic combinations that may contribute to ICT interactions.

Note: As representative head-to-tail type chain structures, five 20-mer models were constructed: chains consisting of twenty (S,S)-units ((S,S)-20-mer), randomly distributed ten (S,S)-units and ten (R,R)-units ((S,S)/(R,R)-20-mer), twenty (R,S)-units ((R,S)-20-mer), randomly distributed ten (R,S)-units and ten (S,R)-units ((R,S)/(S,R)-20-mer), and randomly distributed five (S,S)-units, five (R,R)-units, five (R,S)-units, and five (S,R)-units ((S,S)/(R,R)/(S,R)-20-mer) (Fig. S13 A-E, respectively).

During simulations for 5 nsec at 297 K, (S,S)-20-mer and (S,S)/(R,R)-20-mer remained as stretched chains and showed no bending or folding of the chain (Fig. S13A,B). In contrast, (R,S)-20-mer and (S,S)/(R,R)/(R,S)/(S,R)-20-mer curled up

into compact shapes (Fig. S13C,E), and (R,S)/(S,R)-20-mer also significantly deviated from a stretched conformation (Fig. S13D). Because a rather stiff conformation is proposed based on the α values, chain models consisting only of (S,S) and/or (R,R) unit may be more plausible.

For all models, the distance between neighboring dimethoxyphenyl groups seems too long to form a stack. On the other hand, as for (S,S)-20-mer and (S,S)/(R,R)-20-mer, carbonyl and aromatic groups belonging to adjacent units are located close enough to interact with each other through local bond rotations. The averaged distance between such carbonyl and aromatic groups as defined as a distance between the carbonyl carbon and the 1-position carbon of phenyl group was 3.5 Å for (S,S)-20-mer and 3.7 Å for (S,S)/(R,R)-20-mer which are rather close to the stacking distance in DNAs (3.4 Å). The number of carbonyl-aromatic combinations with a distance of 3.4 Å or shorter out of total 19 combinations per chain was 8 for both (S,S)-20-mer (S,S)/(R,R)-20-mer. On the other hand, the averaged distance and the number of carbonyl-aromatic combinations were 4.1 Å and 1 set for (R,S)-20-mer, 4.0 Å and 3 sets for (R,S)/(S,R)-20-mer, and 4.0 Å and 3 sets for (S,S)/(R,R)/(R,S)/(S,R)-20-mer, respectively.

Thus, (S,S)-20-mer and (S,S)/(R,R)-20-mer models resulted from retention of configuration on monomer addition may explain the stiff conformation and the occurrence of the ICT band through interaction between carbonyl and aromatic groups in the polymer.

References

- (1) Sun, H. J. Phys. Chem. 1998, 102, 7338-7364.
- (2) Fletcher, R.; Reeves, C. M. Comput. J. 1964, 7, 149-154.
- (3) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J.
- R. J. Chem. Phys. 1984, 81, 3684-3690.
- (4) (a) Tong, Y.-F.; Cheng, Y.-H.; Guo, X.-Y.; Wu, S. Chin. J. Synth. Chem. (Hecheng Huaxue),
- 2007, 15, 169-172. (b) Sun, J.; Gu, J.; Li, L.-Z. Chin. J. Synth. Chem. (Hecheng Huaxue), 2010,
- 18, 215–218. (c) Ban, Y.; Oishi, T. Chem. Pharm. Bull. 1958, 6, 574–576.
- (5) Sakan, T.; Kato, M.; Miwa, T. Bull. Chem. Soc. Jpn. 1964, 37, 1171-1174.

Crystal Data for 3,6-diphenyl-1,4-dioxane-2,5-dicarboxylate (I)

Experimental

Data Collection

A colorless platelet crystal of C₂₂H₂₄O₆ having approximate dimensions of 0.428 x 0.072 x 0.010 mm was mounted on a glass fiber. All measurements were made on a Rigaku R-AXIS RAPID diffractometer using multi-layer mirror monochromated Cu-K α radiation.

The crystal-to-detector distance was 127.40 mm.

Cell constants and an orientation matrix for data collection corresponded to a primitive triclinic cell with dimensions:

а	=	6.0103(4) Å	α =	94.344(7) ⁰
b	=	8.0802(6) Å	β =	93.489(6) ⁰
С	=	22.1231(14) Å	$\gamma =$	111.753(5) ⁰
V	=	990.44(12) Å ³		

For Z = 2 and F.W. = 384.43, the calculated density is 1.289 g/cm³. Based on a statistical analysis of intensity distribution, and the successful solution and refinement of the structure, the space group was determined to be:

P-1 (#2)

The data were collected at a temperature of -180 \pm 1°C to a maximum 20 value of 136.3°. A total of 90 oscillation images were collected. A sweep of data was done using ω scans from 80.0 to 260.0° in 10.00° step, at χ =54.0° and ϕ = 0.0°. The exposure rate was 10.0 [sec./°]. A second sweep was performed using ω scans from 80.0 to 260.0° in 10.00° step, at χ =54.0° and ϕ = 90.0°. The exposure rate was 10.0 [sec./°]. Another sweep was performed using ω scans from 80.0 to 260.0° in 10.00° step, at χ =54.0° and ϕ = 180.0°. The exposure rate was 10.0 [sec./°]. Another sweep was performed using ω scans from 80.0 to 260.0° in 10.00° step, at χ =54.0° and ϕ = 180.0°. The exposure rate was 10.0 [sec./°]. Another sweep was performed using ω scans from 80.0 to 260.0° in 10.00° step, at χ =54.0° and ϕ = 0.0°. The exposure rate was 10.0 [sec./°]. Another sweep was performed using ω scans from 80.0 to 260.0° in 10.00° step, at χ =54.0° and ϕ = 0.0°. The exposure rate was 10.0 [sec./°]. Another sweep was performed using ω scans from 80.0 to 260.0° in 10.00° step, at χ =54.0° and ϕ = 0.0°. The exposure rate was 10.0 [sec./°]. Another sweep was performed using ω scans from 80.0 to 260.0° in 10.00° step, at χ =0.0° and ϕ = 0.0°. The exposure rate was 10.0 [sec./°]. Another sweep was performed using ω scans from 80.0 to 260.0° in 10.00° step, at χ =0.0° and ϕ = 0.0°. The exposure rate was 10.0 [sec./°]. The crystal-to-detector distance was 127.40 mm. Readout was performed in the 0.100 mm pixel mode.

Data Reduction

Of the 11495 reflections were collected, where 3498 were unique ($R_{int} = 0.1280$); equivalent reflections were merged.

The linear absorption coefficient, μ , for Cu-K α radiation is 7.729 cm⁻¹. An empirical absorption correction was applied which resulted in transmission factors ranging from 0.486 to 0.992. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by direct methods¹ and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement² on F² was based on 3498 observed reflections and 256 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

 $R1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo| = 0.1069$

wR2 =
$$[\Sigma (w (Fo^2 - Fc^2)^2) / \Sigma w (Fo^2)^2]^{1/2} = 0.3079$$

The standard deviation of an observation of unit weight³ was 1.06. Unit weights were used. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.57 and -0.35 e⁻/Å³, respectively.

Neutral atom scattering factors were taken from Cromer and Waber⁴. Anomalous dispersion effects were included in Fcalc⁵; the values for $\Delta f'$ and $\Delta f''$ were those of Creagh and McAuley⁶. The values for the mass attenuation coefficients are those of Creagh and Hubbell⁷. All calculations were performed using the CrystalStructure⁸ crystallographic software package except for refinement, which was performed using SHELXL-97⁹.

References

(1) <u>SHELX97</u>: Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.

(2) Least Squares function minimized: (SHELXL97)

 $\Sigma w(F_0^2 - F_c^2)^2$ where w = Least Squares weights.

(3) Standard deviation of an observation of unit weight:

 $[\Sigma w(F_0^2 - F_c^2)^2 / (N_0 - N_v)]^{1/2}$

where: N_o = number of observations N_v = number of variables

(4) Cromer, D. T. & Waber, J. T.; "International Tables for X-ray Crystallography", Vol. IV, The Kynoch Press, Birmingham, England, Table 2.2 A (1974).

(5) Ibers, J. A. & Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).

(6) Creagh, D. C. & McAuley, W.J.; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992).

(7) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 (1992).

(8) <u>CrystalStructure 4.1</u>: Crystal Structure Analysis Package, Rigaku Corporation (2000-2013). Tokyo 196-8666, Japan.

(9) <u>SHELX97</u>: Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.

EXPERIMENTAL DETAILS

A. Crystal Data

Empirical Formula	C ₂₂ H ₂₄ O ₆
Formula Weight	384.43
Crystal Color, Habit	colorless, platelet
Crystal Dimensions	0.428 X 0.072 X 0.010 mm
Crystal System	triclinic
Lattice Type	Primitive
Lattice Parameters	$\begin{array}{rcl} a = & 6.0103(4) \ \text{\AA} \\ b = & 8.0802(6) \ \text{\AA} \\ c = & 22.1231(14) \ \text{\AA} \\ \alpha = & 94.344(7) \ ^{\text{O}} \\ \beta = & 93.489(6) \ ^{\text{O}} \\ \gamma = & 111.753(5) \ ^{\text{O}} \\ V = & 990.44(12) \ \text{\AA}^{3} \end{array}$
Space Group	P-1 (#2)
Z value	2
D _{calc}	1.289 g/cm ³
F ₀₀₀	408.00
μ(CuKα)	7.729 cm ⁻¹

B. Intensity Measurements

Diffractometer	R-AXIS RAPID
Radiation	CuK α (λ = 1.54187 Å) multi-layer mirror monochromated
Voltage, Current	40kV, 30mA
Temperature	-180.0 ⁰ C
Detector Aperture	460 x 256 mm
Data Images	90 exposures
ω oscillation Range (χ=54.0, φ=0.0)	80.0 - 260.0 ⁰
Exposure Rate	10.0 sec./ ⁰
ω oscillation Range (χ=54.0, φ=90.0)	80.0 - 260.0 ⁰
Exposure Rate	10.0 sec./ ⁰
ω oscillation Range (χ=54.0, φ=180.0)	80.0 - 260.0 ⁰
Exposure Rate	10.0 sec./ ⁰
ω oscillation Range (χ=54.0, φ=270.0)	80.0 - 260.0 ⁰
Exposure Rate	10.0 sec./ ⁰
ω oscillation Range (χ=0.0, φ=0.0)	80.0 - 260.0 ⁰
Exposure Rate	10.0 sec./ ⁰
Detector Position	127.40 mm
Pixel Size	0.100 mm
20 _{max}	135.0 ⁰
No. of Reflections Measured	Total: 11495 Unique: 3498 (R _{int} = 0.1280)
Corrections	Lorentz-polarization Absorption (trans. factors: 0.486 - 0.992)

C. Structure Solution and Refinement

Structure Solution	Direct Methods (SHELX97)
Refinement	Full-matrix least-squares on F ²
Function Minimized	$\Sigma \text{ w } (\text{Fo}^2 - \text{Fc}^2)^2$
Least Squares Weights	w = 1/ [$\sigma^2(Fo^2)$ + (0.1573 · P) ² + 1.0829 · P] where P = (Max(Fo ² ,0) + 2Fc ²)/3
$2\theta_{max}$ cutoff	135.0 ⁰
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (All reflections)	3498
No. Variables	256
Reflection/Parameter Ratio	13.66
Residuals: R1 (I>2.00σ(I))	0.1069
Residuals: R (All reflections)	0.1232
Residuals: wR2 (All reflections)	0.3079
Goodness of Fit Indicator	1.060
Max Shift/Error in Final Cycle	0.000
Maximum peak in Final Diff. Map	0.57 e⁻/Å ³
Minimum peak in Final Diff. Map	-0.35 e ⁻ /Å ³

Table 1. Atomic coordinates and Biso/Beq

atom	х	у	Z	B _{eq}
O1	0.1179(5)	0.1694(4)	1.03332(12)	3.00(6)
O2	0.3352(5)	0.3831(4)	0.94008(14)	3.64(6)
O3	0.6077(5)	0.2542(4)	0.95434(13)	3.06(6)
O4	-0.0446(5)	0.3483(4)	0.53151(12)	2.99(6)
O5	-0.0775(5)	0.0792(4)	0.43898(15)	3.84(7)
O6	0.3276(5)	0.2115(4)	0.44910(13)	3.25(6)
C1	-0.1452(7)	0.0891(6)	1.11325(19)	2.95(8)
C2	-0.1480(8)	0.0254(6)	1.16950(19)	3.33(8)
C3	-0.2691(8)	0.0761(6)	1.2148(2)	3.71(9)
C4	-0.3839(8)	0.1920(6)	1.2043(2)	3.65(9)
C5	-0.3781(8)	0.2590(6)	1.1487(2)	3.48(8)
C6	-0.2580(7)	0.2085(6)	1.1031(2)	3.25(8)
C7	-0.0336(7)	0.0218(6)	1.06246(18)	2.90(8)
C8	0.2267(7)	0.1047(6)	0.98581(19)	3.07(8)
C9	0.3926(7)	0.2665(6)	0.95785(18)	2.91(8)
C10	0.7854(7)	0.3945(6)	0.92465(19)	3.22(8)
C11	0.7552(9)	0.3452(7)	0.8574(2)	4.15(10)
C12	-0.2069(8)	0.4704(6)	0.61224(19)	3.12(8)
C13	-0.1278(8)	0.5607(6)	0.6700(2)	3.38(8)
C14	-0.2859(9)	0.5345(6)	0.7154(2)	3.85(9)
C15	-0.5222(8)	0.4134(6)	0.7029(2)	3.81(9)
C16	-0.6003(8)	0.3204(6)	0.6458(2)	3.64(9)
C17	-0.4429(8)	0.3488(6)	0.6003(2)	3.32(8)
C18	-0.0374(7)	0.5134(6)	0.56268(19)	3.03(8)
C19	0.1165(7)	0.3851(6)	0.48454(18)	3.05(8)
C20	0.1045(7)	0.2058(6)	0.45520(19)	3.16(8)
C21	0.3451(8)	0.0501(6)	0.4190(2)	3.25(8)
C22	0.3280(10)	0.0502(7)	0.3509(2)	4.46(10)

 $\mathsf{B}_{\mathsf{eq}} = 8/3 \ \pi^2 (\mathsf{U}_{11}(\mathsf{aa}^*)^2 + \mathsf{U}_{22}(\mathsf{bb}^*)^2 + \mathsf{U}_{33}(\mathsf{cc}^*)^2 + 2\mathsf{U}_{12}(\mathsf{aa}^*\mathsf{bb}^*)\mathsf{cos}\ \gamma + 2\mathsf{U}_{13}(\mathsf{aa}^*\mathsf{cc}^*)\mathsf{cos}\ \beta + 2\mathsf{U}_{23}(\mathsf{bb}^*\mathsf{cc}^*)\mathsf{cos}\ \alpha)$

Table 2. Atomic coordinates and B_{iso} involving hydrogen atoms

atom	Х	У	Z	B _{iso}
H2	-0.06726	-0.05311	1.17738	3.998
H3	-0.27234	0.03029	1.25321	4.456
H4	-0.46665	0.22562	1.23525	4.377
H5	-0.45589	0.33961	1.14133	4.175
H6	-0.25316	0.25580	1.06495	3.895
H7	0.06472	-0.04300	1.07965	3.484
H8	0.32323	0.03941	1.00359	3.679
H10A	0.94977	0.41019	0.94102	3.867
H10B	0.76463	0.50954	0.93356	3.867
H11A	0.75016	0.22298	0.84884	4.985
H11B	0.89098	0.42870	0.83901	4.985
H11C	0.60480	0.35152	0.84019	4.985
H13	0.03492	0.64098	0.67887	4.059
H14	-0.23212	0.59916	0.75464	4.615
H15	-0.62999	0.39458	0.73364	4.569
H16	-0.76146	0.23686	0.63737	4.364
H17	-0.49747	0.28477	0.56098	3.983
H18	0.13013	0.58655	0.58098	3.641
H19	0.28429	0.45808	0.50272	3.665
H21A	0.21396	-0.05684	0.43012	3.900
H21B	0.50031	0.04299	0.43324	3.900
H22A	0.45156	0.15960	0.33993	5.355
H22B	0.16842	0.04561	0.33628	5.355
H22C	0.35284	-0.05471	0.33217	5.355

Table 3. Anisotropic displacement parameters

atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
O1	0.0297(14)	0.0321(16)	0.0485(17)	0.0070(12)	0.0115(12)	0.0003(12)
O2	0.0369(16)	0.0423(18)	0.0619(19)	0.0158(14)	0.0128(13)	0.0110(15)
O3	0.0291(14)	0.0354(16)	0.0514(17)	0.0109(12)	0.0079(12)	0.0049(13)
O4	0.0369(15)	0.0331(16)	0.0459(16)	0.0143(13)	0.0128(12)	0.0061(12)
O5	0.0366(17)	0.0394(18)	0.067(2)	0.0118(14)	0.0102(14)	-0.0021(15)
O6	0.0350(15)	0.0384(17)	0.0531(17)	0.0159(13)	0.0109(12)	0.0067(13)
C1	0.032(2)	0.033(2)	0.045(2)	0.0097(17)	0.0078(16)	-0.0001(17)
C2	0.041(2)	0.041(2)	0.045(2)	0.0148(19)	0.0075(17)	0.0027(19)
C3	0.052(3)	0.044(3)	0.043(2)	0.014(2)	0.0109(19)	0.0045(19)
C4	0.043(2)	0.048(3)	0.046(2)	0.015(2)	0.0136(19)	-0.003(2)
C5	0.040(2)	0.040(2)	0.054(3)	0.016(2)	0.0096(18)	0.002(2)
C6	0.038(2)	0.039(2)	0.044(2)	0.0110(19)	0.0084(17)	0.0017(18)
C7	0.030(2)	0.035(2)	0.044(2)	0.0108(18)	0.0080(16)	0.0044(18)
C8	0.034(2)	0.036(2)	0.047(2)	0.0120(18)	0.0120(17)	0.0015(18)
C9	0.030(2)	0.037(2)	0.044(2)	0.0122(18)	0.0082(16)	0.0017(18)
C10	0.031(2)	0.033(2)	0.055(3)	0.0073(18)	0.0105(17)	0.0038(19)
C11	0.049(3)	0.048(3)	0.054(3)	0.008(2)	0.013(2)	0.010(2)
C12	0.039(2)	0.038(2)	0.045(2)	0.0173(19)	0.0109(17)	0.0046(18)
C13	0.046(2)	0.034(2)	0.049(2)	0.0154(19)	0.0071(19)	0.0024(19)
C14	0.059(3)	0.044(3)	0.042(2)	0.018(2)	0.012(2)	0.002(2)
C15	0.050(3)	0.045(3)	0.052(3)	0.018(2)	0.019(2)	0.008(2)
C16	0.041(2)	0.044(3)	0.053(3)	0.014(2)	0.0118(19)	0.006(2)
C17	0.042(2)	0.040(2)	0.044(2)	0.0158(19)	0.0077(18)	0.0025(19)
C18	0.037(2)	0.032(2)	0.046(2)	0.0127(18)	0.0049(17)	0.0021(18)
C19	0.035(2)	0.039(2)	0.043(2)	0.0142(18)	0.0096(17)	0.0047(18)
C20	0.038(2)	0.037(2)	0.048(2)	0.016(2)	0.0097(18)	0.0070(18)
C21	0.039(2)	0.028(2)	0.059(3)	0.0144(18)	0.0144(19)	0.0069(19)
C22	0.069(3)	0.050(3)	0.055(3)	0.026(3)	0.020(2)	0.006(2)

The general temperature factor expression: $exp(-2\pi^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^{*b^*}U_{12}hk + 2a^{*}c^{*}U_{13}hl + 2b^{*}c^{*}U_{23}kl))$

1				
O(1) C(3) C(8)	O(2) C(4) C(9)	O(3) C(5) C(10)	C(1) C(6) C(11)	C(2) C(7)
2				
O(4) C(14) C(19)	O(5) C(15) C(20)	O(6) C(16) C(21)	C(12) C(17) C(22)	C(13) C(18)
	1 O(1) C(3) C(8) 2 O(4) C(14) C(19)	$ \begin{array}{cccccc} 1 & & & & \\ O(1) & O(2) \\ C(3) & C(4) \\ C(8) & C(9) \\ \end{array} $ $ \begin{array}{c} 2 \\ O(4) & O(5) \\ C(14) & C(15) \\ C(19) & C(20) \\ \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 5. Bond lengths (Å)

atom	atom	distance	atom	atom	distance
O1	C7	1.432(5)	01	C8	1.435(6)
02	C9	1.201(6)	O3	C9	1.339(6)
O3	C10	1.469(5)	O4	C18	1.439(5)
O4	C19	1.436(5)	O5	C20	1.199(4)
O6	C20	1.341(6)	O6	C21	1.461(6)
C1	C2	1.381(6)	C1	C6	1.393(7)
C1	C7	1.509(6)	C2	C3	1.397(7)
C3	C4	1.379(8)	C4	C5	1.379(7)
C5	C6	1.396(7)	C7	C8 ¹	1.529(5)
C8	C9	1.523(6)	C10	C11	1.493(6)
C12	C13	1.386(6)	C12	C17	1.389(5)
C12	C18	1.514(6)	C13	C14	1.398(7)
C14	C15	1.390(6)	C15	C16	1.380(6)
C16	C17	1.397(7)	C18	C19 ²	1.532(7)
C19	C20	1.516(7)	C21	C22	1.503(7)

Symmetry Operators:

(1) -X,-Y,-Z+2

atom	atom	distance	atom	atom	distance
C2	H2	0.950	C3	H3	0.950
C4	H4	0.950	C5	H5	0.950
C6	H6	0.950	C7	H7	1.000
C8	H8	1.000	C10	H10A	0.990
C10	H10B	0.990	C11	H11A	0.980
C11	H11B	0.980	C11	H11C	0.980
C13	H13	0.950	C14	H14	0.950
C15	H15	0.950	C16	H16	0.950
C17	H17	0.950	C18	H18	1.000
C19	H19	1.000	C21	H21A	0.990
C21	H21B	0.990	C22	H22A	0.980
C22	H22B	0.980	C22	H22C	0.980

Table 6. Bond lengths involving hydrogens (Å)

Table 7. Bond angles (⁰)

atom	atom	atom	angle	atom	atom	atom	angle
C7	01	C8	109.6(3)	C9	O3	C10	116.4(4)
C18	O4	C19	110.1(3)	C20	O6	C21	116.1(3)
C2	C1	C6	119.2(4)	C2	C1	C7	120.2(5)
C6	C1	C7	120.5(4)	C1	C2	C3	120.2(5)
C2	C3	C4	120.5(4)	C3	C4	C5	119.6(5)
C4	C5	C6	120.1(5)	C1	C6	C5	120.3(4)
01	C7	C1	110.0(3)	01	C7	C8 ¹	107.8(3)
C1	C7	C8 ¹	111.1(3)	01	C8	C7 ¹	110.4(3)
01	C8	C9	107.7(4)	C7 ¹	C8	C9	110.5(3)
O2	C9	O3	125.8(4)	02	C9	C8	124.8(4)
O3	C9	C8	109.3(4)	O3	C10	C11	110.4(3)
C13	C12	C17	119.4(4)	C13	C12	C18	119.1(3)
C17	C12	C18	121.4(4)	C12	C13	C14	120.4(4)
C13	C14	C15	119.7(4)	C14	C15	C16	120.1(4)
C15	C16	C17	120.1(4)	C12	C17	C16	120.3(4)
O4	C18	C12	108.9(3)	O4	C18	C19 ²	107.4(3)
C12	C18	C19 ²	110.8(4)	O4	C19	C18 ²	109.8(4)
O4	C19	C20	107.0(3)	C18 ²	C19	C20	110.3(3)
O5	C20	O6	125.2(5)	O5	C20	C19	125.1(4)
O6	C20	C19	109.7(3)	06	C21	C22	111.4(4)

Symmetry Operators:

(1) -X,-Y,-Z+2

Table 8. Bond angles involving hydrogens (⁰)

atom	atom	atom	angle	atom	atom	atom	angle
C1	C2	H2	119.9	C3	C2	H2	119.9
C2	C3	H3	119.7	C4	C3	H3	119.7
C3	C4	H4	120.2	C5	C4	H4	120.2
C4	C5	H5	119.9	C6	C5	H5	119.9
C1	C6	H6	119.8	C5	C6	H6	119.8
01	C7	H7	109.3	C1	C7	H7	109.3
C8 ¹	C7	H7	109.3	01	C8	H8	109.4
C71	C8	H8	109.4	C9	C8	H8	109.4
O3	C10	H10A	109.6	O3	C10	H10B	109.6
C11	C10	H10A	109.6	C11	C10	H10B	109.6
H10A	C10	H10B	108.1	C10	C11	H11A	109.5
C10	C11	H11B	109.5	C10	C11	H11C	109.5
H11A	C11	H11B	109.5	H11A	C11	H11C	109.5
H11B	C11	H11C	109.5	C12	C13	H13	119.8
C14	C13	H13	119.8	C13	C14	H14	120.2
C15	C14	H14	120.2	C14	C15	H15	120.0
C16	C15	H15	120.0	C15	C16	H16	119.9
C17	C16	H16	119.9	C12	C17	H17	119.9
C16	C17	H17	119.9	O4	C18	H18	109.9
C12	C18	H18	109.9	C19 ²	C18	H18	109.9
O4	C19	H19	109.9	C18 ²	C19	H19	109.9
C20	C19	H19	109.9	O6	C21	H21A	109.4
O6	C21	H21B	109.4	C22	C21	H21A	109.4
C22	C21	H21B	109.4	H21A	C21	H21B	108.0
C21	C22	H22A	109.5	C21	C22	H22B	109.5
C21	C22	H22C	109.5	H22A	C22	H22B	109.5
H22A	C22	H22C	109.5	H22B	C22	H22C	109.5

Symmetry Operators:

(1) -X,-Y,-Z+2

Table 9. Torsion Angles(⁰) (Those having bond angles > 160 or < 20 degrees are excluded.)

atom1 C7	atom2 O1	atom3 C8	atom4 C7 ¹	angle 61.4(4)	atom1 C7	atom2 O1	atom3 C8	atom4 C9	angle -178.0(3)
C8	O1	C7	C1	179.0(3)	C8	O1	C7	C8 ¹	-59.8(4)
C9	O3	C10	C11	-86.5(4)	C10	O3	C9	O2	-1.6(5)
C10	O3	C9	C8	176.2(3)	C18	O4	C19	C18 ²	-61.9(3)
C18	O4	C19	C20	178.4(3)	C19	O4	C18	C12	-179.5(3)
C19	O4	C18	C19 ²	60.4(4)	C20	O6	C21	C22	85.6(4)
C21	O6	C20	O5	1.4(6)	C21	O6	C20	C19	-177.4(3)
C2	C1	C6	C5	-1.8(5)	C6	C1	C2	C3	2.0(5)
C2	C1	C7	O1	-134.1(3)	C2	C1	C7	C8 ¹	106.6(4)
C7	C1	C2	C3	-174.6(3)	C6	C1	C7	01	49.4(4)
C6	C1	C7	C8 ¹	-69.9(4)	C7	C1	C6	C5	174.7(3)
C1	C2	C3	C4	-1.0(5)	C2	C3	C4	C5	-0.3(5)
C3	C4	C5	C6	0.5(5)	C4	C5	C6	C1	0.6(5)
01	C7	C8 ¹	O1 ¹	60.3(5)	01	C7	C8 ¹	C9 ¹	179.2(3)
C1	C7	C8 ¹	O1 ¹	-179.2(3)	C1	C7	C8 ¹	C9 ¹	-60.2(5)
01	C8	C9	O2	-51.1(5)	01	C8	C9	O3	131.1(3)
C71	C8	C9	02	69.5(5)	C7 ¹	C8	C9	O3	-108.3(4)
C13	C12	C17	C16	1.2(8)	C17	C12	C13	C14	-2.1(8)
C13	C12	C18	O4	133.0(4)	C13	C12	C18	C19 ²	-109.0(5)
C18	C12	C13	C14	174.9(4)	C17	C12	C18	O4	-50.1(6)
C17	C12	C18	C19 ²	67.9(6)	C18	C12	C17	C16	-175.7(4)
C12	C13	C14	C15	1.7(8)	C13	C14	C15	C16	-0.4(8)
C14	C15	C16	C17	-0.6(8)	C15	C16	C17	C12	0.1(8)
04	C18	C19 ²	O4 ²	-60.3(3)	04	C18	C19 ²	C20 ²	-177.9(3)
C12	C18	C19 ²	O4 ²	-179.1(3)	C12	C18	C19 ²	C20 ²	63.2(4)
04	C19	C20	05	47.4(5)	04	C19	C20	06	-133.7(3)
C18 ²	C19	C20	O5	-72.0(5)	C18 ²	C19	C20	O6	106.8(4)

Symmetry Operators:

(1) -X,-Y,-Z+2

Table 10. Intramolecular contacts less than 3.60 Å

atom	atom	distance	atom	atom	distance
O1	O1 ¹	2.817(3)	01	02	2.853(4)
O1	O3	3.391(4)	01	C2	3.567(5)
01	C6	2.910(6)	02	C7 ¹	3.092(5)
02	C10	2.716(6)	02	C11	3.296(6)
O3	C1 ¹	3.287(4)	O3	C7 ¹	3.322(4)
O4	O4 ²	2.807(4)	O4	O5	2.813(4)
O4	O6	3.402(5)	O4	C13	3.552(5)
O4	C17	2.915(6)	O5	C18 ²	3.107(6)
O5	C21	2.696(6)	O5	C22	3.274(7)
O6	C12 ²	3.281(6)	O6	C18 ²	3.311(6)
C1	C4	2.791(7)	C1	C9 ¹	2.967(5)
C2	C5	2.771(8)	C2	C8 ¹	3.467(6)
C2	C9 ¹	3.403(5)	C3	C6	2.762(7)
C6	C8 ¹	3.154(7)	C7	C7 ¹	2.832(6)
C8	C8 ¹	2.763(5)	C9	C11	3.142(6)
C12	C15	2.789(7)	C12	C20 ²	2.993(7)
C13	C16	2.774(6)	C13	C19 ²	3.482(6)
C13	C20 ²	3.449(7)	C14	C17	2.777(6)
C17	C19 ²	3.150(6)	C18	C18 ²	2.841(6)
C19	C19 ²	2.780(7)	C20	C22	3.146(8)

Symmetry Operators:

(1) -X,-Y,-Z+2

atom	atom	distance	atom	atom	distance
01	H6	2.687	01	H7 ¹	2.635
01	H8 ¹	2.599	02	H2 ¹	3.423
02	$H7^{1}$	2.884	02	H8	3.186
02	H10B	2.416	02	H11C	2.869
O3	H8	2.332	O3	H11A	2.561
O3	H11B	3.270	O3	H11C	2.702
O4	H17	2.707	O4	H18 ²	2.642
O4	H19 ²	2.610	O5	H13 ²	3.538
O5	H18 ²	2.896	O5	H19	3.182
O5	H21A	2.398	O5	H22B	2.834
O6	H19	2.347	O6	H22A	2.619
O6	H22B	2.682	O6	H22C	3.285
C1	H3	3.262	C1	H5	3.274
C1	H8 ¹	2.709	C2	H4	3.268
C2	H6	3.250	C2	H7	2.561
C2	H11A ¹	3.407	C2	H11C ¹	3.239
C3	H5	3.243	C3	H11A ¹	3.161
C3	H11C ¹	3.374	C4	H2	3.264
C4	H6	3.260	C4	H11A ¹	3.330
C5	H3	3.241	C6	H2	3.252
C6	H4	3.264	C6	H7	3.323
C6	H8 ¹	2.885	C7	H2	2.660
C7	H6	2.676	C7	H7 ¹	3.159
C7	H8	2.541	C8	H6 ¹	3.105
C8	H7	2.538	C8	H8 ¹	3.101
C9	$H2^{1}$	3.429	C9	H7 ¹	2.706
C9	H10A	3.168	C9	H10B	2.489
C9	H11A	3.409	C9	H11C	2.983
C12	H14	3.272	C12	H16	3.272
C12	H19 ²	2.701	C13	H15	3.270
C13	H17	3.254	C13	H18	2.554
C13	H22A ²	3.496	C13	H22B ²	3.292
C14	H16	3.257	C14	H22A ²	3.276
C14	H22B ²	3.497	C15	H13	3.268
C15	H17	3.261	C15	H22A ²	3.527
C16	H14	3.257	C17	H13	3.254
C17	H15	3.264	C17	H18	3,337

Table 11. Intramolecular contacts less than 3.60 Å involving hydrogens

Table 11. Intramolecular contacts less than 3.60 Å involving hydrogens (continued)

atom	atom	distance	atom	atom	distance
C17	H19 ²	2 870	C18	H13	2 644
C18	H17	2 693	C18	H18 ²	3 182
C18	H19	2 561	C19	H17 ²	3.087
C19	H18	2 562	C19	H19 ²	3 1 2 7
C20	H13 ²	3 472	C20	H18 ²	2 695
C20	H21A	2 479	C20	H21B	3 161
C20	H22A	3 475	C20	H22B	2 953
H2	H3	2 342	H2	H7	2.345
H2	$H11C^{1}$	3 215	H3	H4	2.328
H3	$H11\Delta^1$	3 419	НЗ	H11C ¹	3 427
H4	H5	2 331	H5	H6	2 343
H6	H8 ¹	2 607	H7	H8	2.040
H7	H8 ¹	2 892	H10A		2.020
H10A	H11B	2 288	H10A	H11C	2.837
H10B	H11A	2.838	H10R	H11B	2.007
H10B	H11C	2 296	H13	H14	2.004
H13	H18	2 325	H13	$H22B^2$	3 224
H14	H15	2 342	H14	$H22\Delta^2$	3 479
H14	H22B ²	3 548	H15	H16	2 329
H16	H17	2 344	H17	H19 ²	2.576
		2.344		П19 Ц10 ²	2.070
		2.300			2.904
H21A	HZZA	2.847	HZIA	H22B	2.330
H21A	H22C	2.368	H21B	H22A	2.379
H21B	H22B	2.846	H21B	H22C	2.320

Symmetry Operators:

(1) -X,-Y,-Z+2 (2) -X,-Y+1,-Z+1

Table 12. Intermolecular contacts less than 3.60 Å

atom	distance	atom	atom	distance
C10 ¹	3.397(5)	02	O2 ¹	3.217(4)
O3 ¹	3.505(4)	02	C5 ²	3.557(6)
C9 ¹	3.307(5)	02	C10 ³	3.338(6)
O2 ¹	3.505(4)	O3	C6 ⁴	3.420(5)
C21⁵	3.360(5)	O5	O5 ⁵	3.301(5)
O6 ⁵	3.553(4)	O5	C16 ⁶	3.420(5)
C17 ⁶	3.588(5)	O5	C20 ⁵	3.376(6)
C21 ³	3.389(6)	O6	O5 ⁵	3.553(4)
C17 ⁴	3.473(5)	C5	O2 ²	3.557(6)
O3 ³	3.420(5)	C6	C10 ¹	3.535(5)
O2 ¹	3.307(5)	C10	O1 ¹	3.397(5)
O2 ⁴	3.338(6)	C10	C6 ¹	3.535(5)
O5 ⁶	3.420(5)	C17	O5 ⁶	3.588(5)
O6 ³	3.473(5)	C17	C21 ⁵	3.485(7)
O5⁵	3.376(6)	C21	O4 ⁵	3.360(5)
O5 ⁴	3.389(6)	C21	C17 ⁵	3.485(7)
	atom $C10^1$ $O3^1$ $C9^1$ $O2^1$ $C21^5$ $O6^5$ $C17^6$ $C21^3$ $C17^4$ $O3^3$ $O2^1$ $O2^4$ $O5^6$ $O6^3$ $O5^5$ $O5^4$	atomdistance $C10^1$ $3.397(5)$ $O3^1$ $3.505(4)$ $C9^1$ $3.307(5)$ $O2^1$ $3.505(4)$ $C21^5$ $3.360(5)$ $O6^5$ $3.553(4)$ $C17^6$ $3.588(5)$ $C21^3$ $3.389(6)$ $C17^4$ $3.473(5)$ $O3^3$ $3.420(5)$ $O2^1$ $3.307(5)$ $O2^4$ $3.338(6)$ $O5^6$ $3.420(5)$ $O5^5$ $3.376(6)$ $O5^4$ $3.389(6)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	atomdistanceatomatom $C10^1$ $3.397(5)$ $O2$ $O2^1$ $O3^1$ $3.505(4)$ $O2$ $C5^2$ $C9^1$ $3.307(5)$ $O2$ $C10^3$ $O2^1$ $3.505(4)$ $O3$ $C6^4$ $C21^5$ $3.360(5)$ $O5$ $O5^5$ $O6^5$ $3.553(4)$ $O5$ $C16^6$ $C17^6$ $3.588(5)$ $O5$ $C20^5$ $C21^3$ $3.389(6)$ $O6$ $O5^5$ $C17^4$ $3.473(5)$ $C5$ $O2^2$ $O3^3$ $3.420(5)$ $C6$ $C10^1$ $O2^4$ $3.338(6)$ $C10$ $C6^1$ $O5^6$ $3.420(5)$ $C17$ $O5^6$ $O6^3$ $3.473(5)$ $C17$ $O21^5$ $O5^5$ $3.376(6)$ $C21$ $O4^5$ $O5^4$ $3.389(6)$ $C21$ $C17^5$

Symmetry Operators:

(1)	-X+1,-Y+1,-Z+2	(2)	-X,-Y+1,-Z+2
(3)	X-1,Y,Z	(4)	X+1,Y,Z

(5) -X,-Y,-Z+1 (6) -X-1,-Y,-Z+1

atom	atom	distance	atom	atom	distance
01	H5 ¹	3.211	O1	H6 ¹	3.593
01	H10A ²	3.284	O1	H10A ³	3.576
01	H10B ³	2.461	O2	H5⁴	2.891
02	H6 ⁴	3.143	O2	H10A ²	2.408
O2	H10B ³	3.025	O2	H11B ²	3.520
O3	H6 ¹	2.535	O3	H7⁵	3.135
03	H8 ⁵	2.772	03	H10A ⁶	3.569
04	H16 ¹	3.188	04	H17 ¹	3.542
04	H21A ⁷	2.436	04	H21B ²	3.429
04	H21B ⁷	3 510	05	H16 ⁸	2 762
05	H17 ⁸	3 100	05	H21A ⁷	3 058
05	H21B ²	2 438	06	$H17^{1}$	2 565
06	H18 ⁹	3 196	06	H19 ⁹	2 890
C1	H10B ³	3 482	C2	H14 ⁴	3 296
C3	H13 ⁴	3 023	C3	H14 ⁴	3 169
C3	H22A ¹⁰	3 472	C3	H22C ¹⁰	3 518
C4	H13 ⁴	3 100	C4	H14 ¹¹	3 450
C4	H14 ⁴	3 480	C4	H15 ¹¹	3 483
C4	H22A ¹⁰	3 215	C5	H7 ²	3 501
C5	H8 ²	3 570	C5	H11B ³	3 055
C6		3.061	00 C6		3 213
C6	H10B ³	3 195	00 C6	H11B ³	3.065
C7	H10B ³	3 515	C8		3 242
C8	H8 ⁵	3 321	C8	H10B ³	3 454
C9		3 1 1 6	C9	H10A ²	3 287
C9	H10B ³	3 290	C10		3 371
C10		3 143	C10	H7 ⁵	3 279
C10	Η10Δ ⁶	3 272	C11	H2 ⁵	3 586
C11	H7 ⁵	3 371	C11	H14 ¹	3 162
C12	H21A ⁷	3 386	C12	$H22C^{7}$	3 484
C13	H3 ⁴	3 514	C14	H4 ¹¹	3 029
C14	H11B ²	3 164	C14	H11C ²	3 218
C15	H3 ¹²	3 565	C15	H4 ¹¹	3 153
C15	$H11C^2$	3 208	C15	H22C ⁷	3 461
C16	H18 ²	3 474	C16	H19 ²	3 546
C16	H21B ⁷	3 563	C16	$H22C^{7}$	3.082
C17	H19 ²	3 009	C17	$H21A^7$	3 192
C17	H21B ⁷	3.082	C17	H22C ⁷	3 093
C18	H21A ⁷	3 459	C19	H17 ¹	3 166
C19	H19 ⁹	3 331	C19	H21A ⁷	3 443
C20	H17 ¹	3 093	C20	H21A ⁷	3 301
C20	H21B ²	3 361	C21	H16 ⁸	3 498
C21	H17 ¹	3 430	C21	H17 ⁷	3 213
C21	H18 ⁹	3 421	C21	H21B ¹³	3 555
C22	H3 ¹⁴	3.367	C22	H4 ¹⁴	3 118
C22	H16 ⁸	3 374	H2	C11 ⁵	3 586
H2	$H4^{1}$	3.566	H2	H11A ⁵	2 794
H2	H11B ⁵	3 568	H2	$H14^{4}$	3 591
H2	$H15^{12}$	3.512	H3	$C13^4$	3 514
H3	C15 ¹²	3.565	H3	C22 ¹⁰	3.367
H3	H13 ⁴	2.770	H3	H14 ⁴	3.406
	-	-	-		

			· · ·	
Table 12 Intermelocular	contacte la	see than 2 G		involving hydrogone
Table 13. Internolecular	CUILIAULS IE	555 inan 5.0	אט	

				<u>o</u>		
T-LL- 40					the state of the second	
	Intermolecillar	contacte i	lace than	3 60 0	INVOIVING	nvaraane
	Internolecular	COLICACIÓ	cos inan	J.00 A		Invuluens

atom	atom	distance	atom	atom	distance
H3	H15 ¹²	3.301	H3	H16 ¹²	3.408
H3	H22A ¹⁰	2.982	H3	H22B ¹⁵	3.089
H3	H22C ¹⁰	2.848	H4	C14 ¹¹	3.029
H4	C15 ¹¹	3.153	H4	C22 ¹⁰	3.118
H4	H2 ²	3.566	H4	H13⁴	2.919
H4	H14 ¹¹	2.690	H4	H15 ¹¹	2.922
H4	H22A ¹⁰	2.454	H4	H22B ¹⁰	3.263
H4	H22C ¹⁰	3.178	H5	O1 ²	3.211
H5	O2 ⁴	2.891	H5	H7 ²	3.464
H5	H8 ²	3 596	H5	H10B ⁴	3 047
H5	H11B ³	3 195	H5	H11C ⁴	2 957
H5	H14 ¹¹	3 178	H5	H15 ¹¹	3 261
H6	$O1^2$	3 593	H6	Ω^{24}	3 143
He	$O3^{2}$	2 535	He	$C8^2$	3 2/2
	$C0^2$	2.333		$C10^{2}$	3 271
	C_{103}	2 1 / 2			2 702
		0.140 0.010			2.702
		J.ZIO 2 0 4 4			2.007
		2.041			3.202
	03°	3.135	H/	C51	3.501
H/	C10 ³	3.279	H/		3.371
H/	H5'	3.464	H/	H10A ³	2.936
H/	H11A ³	2.681	H8	O3 ⁵	2.772
H8	C5'	3.570	H8	C6 ¹	3.061
H8	C8°	3.321	H8	H5'	3.596
H8	H6 ¹	2.702	H8	H8°	2.444
H10A	011	3.284	H10A	O1 ³	3.576
H10A	O21	2.408	H10A	O3°	3.569
H10A	C6 ³	3.213	H10A	C9 ¹	3.287
H10A	C10 ⁶	3.272	H10A	$H6^{1}_{-}$	3.218
H10A	H6 ³	2.657	H10A	H7 ⁵	2.936
H10A	H10A ⁶	2.805	H10A	H10B ⁶	3.064
H10B	O1 ³	2.461	H10B	O2 ³	3.025
H10B	C1 ³	3.482	H10B	C6 ³	3.195
H10B	C7 ³	3.515	H10B	C8 ³	3.454
H10B	C9 ³	3.290	H10B	H5⁴	3.047
H10B	H6 ³	2.841	H10B	H10A ⁶	3.064
H11A	H2 ⁵	2.794	H11A	H7 ⁵	2.681
H11B	O21	3.520	H11B	C5 ³	3.055
H11B	C6 ³	3.065	H11B	C14 ¹	3.164
H11B	H2⁵	3.568	H11B	H5 ³	3.195
H11B	H6 ³	3.202	H11B	H14 ¹	2.628
H11C	C14 ¹	3.218	H11C	C15 ¹	3.208
H11C	H5⁴	2.957	H11C	H14 ¹	2.809
H11C	H15 ¹	2.784	H13	C3 ⁴	3.023
H13	C4 ⁴	3.100	H13	H3⁴	2.770
H13	$H4^4$	2,919	H13	H15 ¹	3.540
H13	H22A ⁹	2.978	H14	$C2^4$	3.296
H14	$C3^4$	3.169	H14	$C4^{11}$	3,450
H14	$C4^4$	3,480	H14	$C11^{2}$	3 162
H14	H2 ⁴	3 591	H14	H3 ⁴	3 406
H14	H4 ¹¹	2.690	H14	H5 ¹¹	3,178

Table 13. Intermolecular contacts less than 3.60	Å involving hydrogens
--	-----------------------

atom	atom	distance	atom	atom	distance
H14	H11B ²	2 628	H14	H11C ²	2 809
H15	$C4^{11}$	3 483	H15	$H2^{12}$	3 512
H15	H3 ¹²	3.301	H15	H4 ¹¹	2.922
H15	H5 ¹¹	3 261	H15	$H11C^2$	2 784
H15	H13 ²	3 540	H16	$\Omega 4^2$	3 188
H16	$O5^8$	2 762	H16	C21 ⁸	3 /08
H16	C_{228}	2.702	H16	U21 U312	3 108
H16	U22 H182	3.430	H16	H10 ²	3.400
		2 926		LI19 LI2107	3.502
		2.020			3.525
		2.707			3.430 2.540
		3.339		04^{-}	3.342
	05°	3.100		00^{-1}	2.505
		3.100		C20 ²	3.093
H17	$C21^{2}$	3.430	H17		3.213
H17	H19 ²	2.602	H17	H21A'	2.945
H17	H21B ²	3.308	H1/	H21B'	2.655
H17	H22C'	3.378	H18	O6 ⁹	3.196
H18	C16 ¹	3.474	H18	C21 ⁹	3.421
H18	H16 ¹	3.430	H18	H21B ^y	3.048
H18	H22A ⁹	2.948	H19	O6 ⁹	2.890
H19	C16 ¹	3.546	H19	C17 ¹	3.009
H19	C19 ⁹	3.331	H19	H16 ¹	3.562
H19	H17 ¹	2.602	H19	H19 ⁹	2.438
H21A	O4 ⁷	2.436	H21A	O5 ⁷	3.058
H21A	C12 ⁷	3.386	H21A	C17 ⁷	3.192
H21A	C18 ⁷	3.459	H21A	C19 ⁷	3.443
H21A	C20 ⁷	3.301	H21A	H16 ⁸	2.826
H21A	H17 ⁷	2.945	H21A	H21B ¹³	3.358
H21B	O4 ¹	3.429	H21B	O4 ⁷	3.510
H21B	O5 ¹	2.438	H21B	C16 ⁷	3.563
H21B	C17 ⁷	3.082	H21B	C20 ¹	3.361
H21B	C21 ¹³	3.555	H21B	H16 ⁷	3.523
H21B	H17 ¹	3.308	H21B	H17 ⁷	2.655
H21B	H18 ⁹	3.048	H21B	H21A ¹³	3.358
H21B	H21B ¹³	3.085	H22A	C3 ¹⁴	3.472
H22A	C4 ¹⁴	3.215	H22A	H3 ¹⁴	2.982
H22A	H4 ¹⁴	2.454	H22A	H13 ⁹	2.978
H22A	H18 ⁹	2.948	H22B	H3 ¹⁶	3.089
H22B	H4 ¹⁴	3.263	H22B	H16 ⁸	2.787
H22C	$C3^{14}$	3 518	H22C	$C12^{7}$	3 484
H22C	C15 ⁷	3.461	H22C	$C16^{7}$	3.082
H22C	$C17^{7}$	3 093	H22C	H3 ¹⁴	2 848
H22C	H4 ¹⁴	3 178	H22C	H16 ⁸	3 438
H22C	H16 ⁷	3 359	H22C	H17 ⁷	3 378
		0.000			0.010

Symmetry Operators:

(1)	X+1,Y,Z	(2)	X-1,Y,Z
(3)	-X+1,-Y+1,-Z+2	(4)	-X,-Y+1,-Z+2
(5)	-X+1,-Y,-Z+2	(6)	-X+2,-Y+1,-Z+2

(7)	-X,-Y,-Z+1	(8)	-X-1,-Y,-Z+1
(9)	-X+1,-Y+1,-Z+1	(10)	X-1,Y,Z+1
(11)	-X-1,-Y+1,-Z+2	(12)	-X-1,-Y,-Z+2
(13)	-X+1,-Y,-Z+1	(14)	X+1,Y,Z-1
(15)	X,Y,Z+1	(16)	X,Y,Z-1

Crystal Data for ethyl 2-benzyl-4-hydroxy-5-oxo-3-phenyl-2,5-dihydrofuran-2-carboxylate (II)

Experimental

Data Collection

A colorless block crystal of C₂₀H₁₈O₅ having approximate dimensions of 0.168 x 0.137 x 0.125 mm was mounted on a glass fiber. All measurements were made on a Rigaku R-AXIS RAPID diffractometer using multi-layer mirror monochromated Cu-K α radiation.

The crystal-to-detector distance was 127.40 mm.

Cell constants and an orientation matrix for data collection corresponded to a primitive triclinic cell with dimensions:

а	=	9.6559(3) Å	α =	84.288(6) ⁰
b	=	9.9869(3) Å	β =	81.394(6) ⁰
С	=	18.8822(5) Å	γ =	73.131(5) ⁰
V	=	1719.86(10) Å ³		

For Z = 4 and F.W. = 338.36, the calculated density is 1.307 g/cm³. Based on a statistical analysis of intensity distribution, and the successful solution and refinement of the structure, the space group was determined to be:

P-1 (#2)

The data were collected at a temperature of -180 \pm 1°C to a maximum 20 value of 136.4°. A total of 90 oscillation images were collected. A sweep of data was done using ω scans from 80.0 to 260.0° in 10.00° step, at χ =54.0° and ϕ = 0.0°. The exposure rate was 5.0 [sec./°]. A second sweep was performed using ω scans from 80.0 to 260.0° in 10.00° step, at χ =54.0° and ϕ = 90.0°. The exposure rate was 5.0 [sec./°]. Another sweep was performed using ω scans from 80.0 to 260.0° in 10.00° step, at χ =54.0° and ϕ = 180.0°. The exposure rate was 5.0 [sec./°]. Another sweep was performed using ω scans from 80.0 to 260.0° in 10.00° step, at χ =54.0° and ϕ = 180.0°. The exposure rate was 5.0 [sec./°]. Another sweep was performed using ω scans from 80.0 to 260.0° in 10.00° step, at χ =54.0° and ϕ = 0.0°. The exposure rate was 5.0 [sec./°]. Another sweep was performed using ω scans from 80.0 to 260.0° in 10.00° step, at χ =54.0° and ϕ = 0.0°. The exposure rate was 5.0 [sec./°]. Another sweep was performed using ω scans from 80.0 to 260.0° in 10.00° step, at χ =0.0° and ϕ = 0.0°. The exposure rate was 5.0 [sec./°]. Another sweep was performed using ω scans from 80.0 to 260.0° in 10.00° step, at χ =0.0° and ϕ = 0.0°. The exposure rate was 5.0 [sec./°]. Another sweep was performed using ω scans from 80.0 to 260.0° in 10.00° step, at χ =0.0° and ϕ = 0.0°. The exposure rate was 5.0 [sec./°]. The crystal-to-detector distance was 127.40 mm. Readout was performed in the 0.100 mm pixel mode.

Data Reduction

Of the 20584 reflections were collected, where 6171 were unique ($R_{int} = 0.0339$); equivalent reflections were merged.

The linear absorption coefficient, μ , for Cu-K α radiation is 7.764 cm⁻¹. An empirical absorption correction was applied which resulted in transmission factors ranging from 0.612 to 0.908. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by direct methods¹ and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement² on F² was based on 6171 observed reflections and 455 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

 $R1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo| = 0.0522$

wR2 =
$$[\Sigma (w (Fo^2 - Fc^2)^2) / \Sigma w (Fo^2)^2]^{1/2} = 0.1585$$

The standard deviation of an observation of unit weight³ was 1.05. Unit weights were used. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.25 and -0.24 e⁻/Å³, respectively.

Neutral atom scattering factors were taken from Cromer and Waber⁴. Anomalous dispersion effects were included in Fcalc⁵; the values for $\Delta f'$ and $\Delta f''$ were those of Creagh and McAuley⁶. The values for the mass attenuation coefficients are those of Creagh and Hubbell⁷. All calculations were performed using the CrystalStructure⁸ crystallographic software package except for refinement, which was performed using SHELXL-97⁹.

References

(1) <u>SHELX97</u>: Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.

(2) Least Squares function minimized: (SHELXL97)

 $\Sigma w(F_0^2 - F_c^2)^2$ where w = Least Squares weights.

(3) Standard deviation of an observation of unit weight:

 $[\Sigma w(F_0^2 - F_c^2)^2 / (N_0 - N_v)]^{1/2}$

where: N_o = number of observations N_v = number of variables

(4) Cromer, D. T. & Waber, J. T.; "International Tables for X-ray Crystallography", Vol. IV, The Kynoch Press, Birmingham, England, Table 2.2 A (1974).

(5) Ibers, J. A. & Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).

(6) Creagh, D. C. & McAuley, W.J.; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992).

(7) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 (1992).

(8) <u>CrystalStructure 4.1</u>: Crystal Structure Analysis Package, Rigaku Corporation (2000-2013). Tokyo 196-8666, Japan.

(9) <u>SHELX97</u>: Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.

EXPERIMENTAL DETAILS

A. Crystal Data

Empirical Formula	C ₂₀ H ₁₈ O ₅
Formula Weight	338.36
Crystal Color, Habit	colorless, block
Crystal Dimensions	0.168 X 0.137 X 0.125 mm
Crystal System	triclinic
Lattice Type	Primitive
Lattice Parameters	$\begin{array}{rcl} a = & 9.6559(3) \ \text{\AA} \\ b = & 9.9869(3) \ \text{\AA} \\ c = & 18.8822(5) \ \text{\AA} \\ \alpha = & 84.288(6) \ ^{\text{O}} \\ \beta = & 81.394(6) \ ^{\text{O}} \\ \gamma = & 73.131(5) \ ^{\text{O}} \\ V = & 1719.86(10) \ \text{\AA}^{3} \end{array}$
Space Group	P-1 (#2)
Z value	4
D _{calc}	1.307 g/cm ³
F ₀₀₀	712.00
μ(CuKα)	7.764 cm ⁻¹

B. Intensity Measurements

Diffractometer	R-AXIS RAPID
Radiation	CuK α (λ = 1.54187 Å) multi-layer mirror monochromated
Voltage, Current	40kV, 30mA
Temperature	-180.0 ⁰ C
Detector Aperture	460 x 256 mm
Data Images	90 exposures
ω oscillation Range (χ=54.0, φ=0.0)	80.0 - 260.0 ⁰
Exposure Rate	5.0 sec./ ⁰
ω oscillation Range (χ=54.0, φ=90.0)	80.0 - 260.0 ⁰
Exposure Rate	5.0 sec./ ⁰
ω oscillation Range (χ=54.0, φ=180.0)	80.0 - 260.0 ⁰
Exposure Rate	5.0 sec./ ⁰
ω oscillation Range (χ=54.0, φ=270.0)	80.0 - 260.0 ⁰
Exposure Rate	5.0 sec./ ⁰
ω oscillation Range (χ=0.0, φ=0.0)	80.0 - 260.0 ⁰
Exposure Rate	5.0 sec./ ⁰
Detector Position	127.40 mm
Pixel Size	0.100 mm
20 _{max}	136.4 ⁰
No. of Reflections Measured	Total: 20584 Unique: 6171 (R _{int} = 0.0339)
Corrections	Lorentz-polarization Absorption (trans. factors: 0.612 - 0.908)

C. Structure Solution and Refinement

Structure Solution	Direct Methods (SHELX97)
Refinement	Full-matrix least-squares on F ²
Function Minimized	$\Sigma \text{ w } (\text{Fo}^2 - \text{Fc}^2)^2$
Least Squares Weights	w = 1/ [$\sigma^2(Fo^2)$ + (0.0886 · P) ² + 0.0000 · P] where P = (Max(Fo ² ,0) + 2Fc ²)/3
$2\theta_{max}$ cutoff	136.4 ⁰
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (All reflections)	6171
No. Variables	455
Reflection/Parameter Ratio	13.56
Residuals: R1 (I>2.00 σ (I))	0.0522
Residuals: R (All reflections)	0.0741
Residuals: wR2 (All reflections)	0.1585
Goodness of Fit Indicator	1.049
Max Shift/Error in Final Cycle	0.000
Maximum peak in Final Diff. Map	0.25 e⁻/Å ³
Minimum peak in Final Diff. Map	-0.24 e ⁻ /Å ³

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	atom	х	у	Z	B _{eq}
Q2 0.46453(16) 0.37458(15) 0.75443(7) 3.83(3) Q3 0.37547(15) 0.55149(14) 0.62569(7) 3.30(3) Q4 0.13712(16) 0.07694(17) 0.66457(9) 4.64(4) Q5 0.08594(16) 0.28266(17) 0.71468(8) 4.40(3) Q6 0.58357(13) -0.15971(13) 0.75411(6) 2.78(3) Q7 0.48920(14) -0.30779(14) 0.70904(7) 3.54(3) Q8 0.57202(16) -0.49154(15) 0.80756(7) 3.54(3) Q10 0.87836(14) -0.23689(15) 0.74605(7) 3.33(4) C2 0.6774(2) 0.0666(2) 0.62629(12) 3.88(5) C3 0.8156(3) 0.0809(2) 0.60191(13) 4.30(5) C4 0.8461(3) 0.1264(2) 0.51348(14) 4.45(5) C5 0.7406(3) 0.1593(2) 0.4858(13) 4.23(5) C6 0.6021(2) 0.1468(2) 0.5147(10) 3.6(4) C7 0.4194(2) 0.60477(10) 2.95(4) <td>01</td> <td>0.38040(15)</td> <td>0.21775(14)</td> <td>0.71107(7)</td> <td>3.27(3)</td>	01	0.38040(15)	0.21775(14)	0.71107(7)	3.27(3)
O3 0.37547(15) 0.55149(14) 0.62569(7) 3.30(3) O4 0.13712(16) 0.07694(17) 0.66457(9) 4.64(4) O5 0.08594(16) 0.28266(17) 0.71468(8) 4.40(3) O6 0.58357(13) -0.15971(13) 0.75411(6) 2.78(3) O7 0.48920(14) -0.30779(14) 0.70904(7) 3.18(3) O8 0.57202(16) -0.49154(15) 0.8366(17) 3.56(3) O10 0.87836(14) -0.23689(15) 0.74605(7) 3.36(3) C1 0.5688(2) 0.0987(2) 0.56139(11) 3.36(3) C2 0.6774(2) 0.0666(2) 0.6629(12) 3.88(5) C3 0.8156(3) 0.0809(2) 0.60191(13) 4.30(5) C4 0.8461(3) 0.1264(2) 0.53148(14) 4.45(5) C5 0.7406(3) 0.1593(2) 0.46888(13) 4.23(5) C6 0.6021(2) 0.4682(2) 0.5047(10) 2.96(4) C7 0.4194(2) 0.0810(2) 0.60497(10) <td>02</td> <td>0.46453(16)</td> <td>0.37458(15)</td> <td>0.75443(7)</td> <td>3.83(3)</td>	02	0.46453(16)	0.37458(15)	0.75443(7)	3.83(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O3	0.37547(15)	0.55149(14)	0.62569(7)	3.30(3)
O5 0.08594(16) 0.28266(17) 0.71468(8) 4.40(3) O6 0.58357(13) -0.15971(13) 0.75411(6) 2.78(3) O7 0.48920(14) -0.30779(14) 0.70904(7) 3.18(3) O8 0.57202(16) -0.49154(15) 0.83661(7) 3.60(3) O9 0.84682(14) -0.23689(15) 0.74605(7) 3.54(3) C1 0.5688(2) 0.0987(2) 0.58139(11) 3.33(4) C2 0.6774(2) 0.0666(2) 0.62629(12) 3.88(5) C3 0.8156(3) 0.0809(2) 0.60191(13) 4.30(5) C4 0.8461(3) 0.1264(2) 0.5148(14) 4.45(5) C5 0.7406(3) 0.1593(2) 0.48588(13) 4.23(5) C6 0.6021(2) 0.44612(2) 0.60471(10) 3.6(4) C8 0.3175(2) 0.2065(2) 0.64717(10) 3.04(4) C9 0.365(2) 0.3442(2) 0.64230(10) 2.86(4) C11 0.4082(2) 0.3432(2) 0.70798(11)	O4	0.13712(16)	0.07694(17)	0.66457(9)	4.64(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O5	0.08594(16)	0.28266(17)	0.71468(8)	4.40(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O6	0.58357(13)	-0.15971(13)	0.75411(6)	2.78(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	07	0.48920(14)	-0.30779(14)	0.70904(7)	3.18(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	08	0.57202(16)	-0.49154(15)	0.83661(7)	3.60(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09	0.84682(14)	-0.04580(15)	0.80756(7)	3.54(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O10	0.87836(14)	-0.23689(15)	0.74605(7)	3.35(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1	0.5688(2)	0.0987(2)	0.58139(11)	3.33(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2	0.6774(2)	0.0666(2)	0.62629(12)	3.88(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3	0.8156(3)	0.0809(2)	0.60191(13)	4.30(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4	0.8461(3)	0.1264(2)	0.53148(14)	4.45(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5	0.7406(3)	0.1593(2)	0.48588(13)	4.23(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6	0.6021(2)	0.1468(2)	0.51097(11)	3.68(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7	0.4194(2)	0.0810(2)	0.60850(11)	3.56(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8	0.3175(2)	0.2065(2)	0.64717(10)	310(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9	0.3065(2)	0.3464(2)	0.60497(10)	2.95(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10	0.3612(2)	0.0101(2) 0.4224(2)	0.60107(10) 0.64230(10)	2.00(1) 2.86(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11	0.0012(2) 0.4082(2)	0.4224(2) 0.3432(2)	0.04200(10) 0.70798(11)	320(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12	0.4002(2)	0.0402(2) 0.3782(2)	0.73452(10)	2 97(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13	0.2007(2) 0.2847(2)	0.0702(2) 0.4872(2)	0.00402(10)	2.57(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14	0.2047(2) 0.2/17(2)	0.4072(2) 0.51/1/(2)	0.40325(10) 0.42135(11)	3.20(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15	0.2417(2) 0.1660(3)	0.3144(2) 0.4334(2)	0.42100(11) 0.307/8(11)	4.00(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16	0.1000(0)	0.3254(2)	0.007 + 0(11) 0.44157(12)	5 16(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C17	0.1001(0) 0.1771(3)	0.0204(0)	0.44107(12) 0.50948(12)	$\Delta 39(5)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C18	0.1771(0)	0.2373(3)	0.00040(12) 0.67584(11)	3.34(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C19	-0.0539(2)	0.1757(2) 0.2662(3)	0.075096(12)	436(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C20	-0.0809(3)	0.2002(0)	0.70000(12)	5 30(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C21	0.0000(0) 0.4081(2)	-0.0498(2)	0.02040(10) 0.89002(10)	3.00(0) 3.12(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C22	0.4001(2) 0.3854(2)	-0.1009(2)	0.00002(10) 0.96077(11)	3.12(+) 3.51(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C23	0.000+(2) 0.2536(3)	-0.1262(2)	0.00077(11) 0.08821(13)	$\Delta \Delta 0(5)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C24	0.2000(0) 0.1441(3)	-0.1015(3)	0.00021(10) 0.94545(14)	4.58(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C25	0.1441(0)	-0.0491(2)	0.34543(14)	4.00(0)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C26	0.1000(2)	-0.0233(2)	0.07007(10) 0.84802(12)	3 69(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C27	0.2000(2)	-0.0288(2)	0.85839(10)	3.03(4) 3.01(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C28	0.00 + 7 (2) 0.6508(2)	-0.1553(2)	0.81741(9)	2.68(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C29	0.0000(2) 0.6575(2)	-0.2968(2)	0.85792(10)	2.00(+) 2 75(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C30	0.0070(2) 0.5952(2)	-0.3658(2)	0.00702(10) 0.82041(10)	2.73(4) 2.87(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C31	0.5352(2) 0.5489(2)	-0.2817(2)	0.02041(10)	2.07(4) 2.84(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C32	0.3403(2)	-0.3375(2)	0.70000(10) 0.92751(10)	2.04(4) 2.98(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C33	0.7700(2)	-0.2593(2)	0.95484(11)	373(5)
C35 $0.8035(3)$ $-0.4062(3)$ $1.02257(12)$ $4.70(6)$ $C35$ $0.8035(3)$ $-0.4062(3)$ $1.06349(12)$ $4.99(6)$ $C36$ $0.7310(3)$ $-0.4869(3)$ $1.03659(11)$ $4.28(5)$ $C37$ $0.6854(2)$ $-0.4524(2)$ $0.96943(10)$ $3.37(4)$ $C38$ $0.8027(2)$ $-0.1376(2)$ $0.79012(10)$ $2.81(4)$ $C39$ $1.0317(2)$ $-0.2419(2)$ $0.72260(10)$ $3.45(4)$ $C40$ $1.1248(2)$ $-0.3338(2)$ $0.77521(11)$ $3.98(5)$	C34	0.8335(3)	-0.2030(2)	1 02237(12)	4 76(6)
C360.7310(3)-0.4869(3)1.03659(11)4.28(5)C370.6854(2)-0.4524(2)0.96943(10)3.37(4)C380.8027(2)-0.1376(2)0.79012(10)2.81(4)C391.0317(2)-0.2419(2)0.72260(10)3.45(4)C401.1248(2)-0.3338(2)0.77521(11)3.98(5)	C35	0.8035(3)	-0.4062(3)	1.02207(12)	4.70(0)
C370.6854(2)-0.4524(2)0.96943(10)3.37(4)C380.8027(2)-0.1376(2)0.79012(10)2.81(4)C391.0317(2)-0.2419(2)0.72260(10)3.45(4)C401.1248(2)-0.3338(2)0.77521(11)3.98(5)	C36	0 7310(3)	-0 4869(3)	1 03659(11)	4 28(5)
C38 $0.8027(2)$ $-0.1376(2)$ $0.79012(10)$ $2.81(4)$ C39 $1.0317(2)$ $-0.2419(2)$ $0.72260(10)$ $3.45(4)$ C40 $1.1248(2)$ $-0.3338(2)$ $0.77521(11)$ $3.98(5)$	C37	0.6854(2)	-0 4524(2)	0.96943(10)	337(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C38	0 8027(2)	-0 1376(2)	0 79012(10)	2 81(4)
C40 1.1248(2) -0.3338(2) 0.77521(11) 3.98(5)	C39	1 0317(2)	-0 2419(2)	0 72260(10)	345(4)
	C40	1.1248(2)	-0.3338(2)	0.77521(11)	3.98(5)

 $B_{eq} = 8/3 \pi^2 (U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}(aa^*bb^*)\cos\gamma + 2U_{13}(aa^*cc^*)\cos\beta + 2U_{23}(bb^*cc^*)\cos\alpha)$

Table 2. Atomic coordinates and B_{iso} involving hydrogen atoms

atom	Х	У	Z	B _{iso}
H2	0.65649	0.03413	0.67462	4.654
H3	0.88822	0.05956	0.63334	5.164
H3A	0.41966	0.57237	0.65616	3.960
H4	0.94082	0.13524	0.51424	5.346
H5	0.76267	0.19032	0.43742	5.072
H6	0.52900	0.17138	0.47968	4.421
H7A	0.43035	-0.00353	0.64174	4.276
H7B	0.37435	0.06548	0.56738	4.276
H8	0.53712	-0.51370	0.80281	4.317
H13	0.33617	0.54396	0.50526	3.905
H14	0.26437	0.58902	0.39107	4.434
H15	0.13573	0.45227	0.35102	4.797
H16	0.08383	0.26887	0.42514	6.189
H17	0.15378	0.22277	0.53938	5.264
H19A	-0.13320	0.31496	0.72193	5.229
H19B	-0.05013	0.16572	0.75735	5.229
H20A	-0.17270	0.31461	0.84638	6.358
H20B	-0.08741	0.42673	0.81350	6.358
H20C	-0.00065	0.27918	0.84832	6.358
H22	0.46083	-0.11846	0.99043	4.211
H23	0.23868	-0.16078	1.03664	5.279
H24	0.05455	-0.12066	0.96436	5.495
H25	0.08703	-0.03094	0.84621	5.148
H26	0.30882	0.01308	0.79985	4.429
H27A	0.60556	-0.01388	0.89745	3.618
H27B	0.53917	0.05621	0.82538	3.618
H33	0.81414	-0.18256	0.92675	4.473
H34	0.88420	-0.23925	1.04079	5.715
H35	0.83249	-0.42829	1.11015	5.991
H36	0.71251	-0.56610	1.06427	5.140
H37	0.63443	-0.50758	0.95160	4.047
H39A	1.04347	-0.14621	0.71962	4.137
H39B	1.06223	-0.27952	0.67440	4.137
H40A	1.22691	-0.33521	0.76047	4.771
H40B	1.11562	-0.42928	0.77657	4.771
H40C	1.09282	-0.29719	0.82300	4.771

atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
01	0.0527(9)	0.0434(9)	0.0396(8)	-0.0284(7)	-0.0171(7)	0.0047(6)
02	0.0655(10)	0.0497(10)	0.0442(8)	-0.0313(8)	-0.0255(7)	0.0053(7)
O3	0.0523(9)	0.0405(9)	0.0426(8)	-0.0245(7)	-0.0178(7)	0.0028(6)
O4	0.0532(10)	0.0570(11)	0.0783(12)	-0.0327(8)	-0.0137(8)	-0.0002(9)
O5	0.0540(10)	0.0678(11)	0.0556(10)	-0.0367(9)	0.0041(8)	-0.0092(8)
06	0.0387(8)	0.0422(8)	0.0328(7)	-0.0221(6)	-0.0111(6)	0.0028(6)
07	0.0447(8)	0.0486(9)	0.0369(8)	-0.0240(7)	-0.0148(6)	0.0008(6)
08	0.0607(10)	0.0459(9)	0.0441(8)	-0.0317(8)	-0.0225(7)	0.0063(7)
09	0.0411(8)	0.0495(9)	0.0524(9)	-0.0251(7)	-0.0098(7)	-0.0002(7)
010	0.0359(8)	0.0557(10)	0.0418(8)	-0.0223(7)	-0.0041(6)	-0.0045(7)
C1	0.0507(13)	0.0346(12)	0.0472(12)	-0.0191(10)	-0.0127(10)	0.0003(9)
C2	0.0544(14)	0.0467(14)	0.0551(14)	-0.0272(11)	-0.0172(11)	0.0000(0)
C3	0.0011(11) 0.0521(14)	0.0466(14)	0.0711(16)	-0.0212(11)	-0.0191(12)	0.0000(11)
C.4	0.0021(14) 0.0482(14)	0.0400(14)	0.0774(17)	-0.0212(11)	0.0101(12) 0.0004(13)	-0.0039(12)
C5	0.0402(14)	0.0445(14)	0.0774(17) 0.0522(14)	-0.0187(12)	0.000+(10) 0.0016(12)	-0.0046(11)
C6	0.0007(10) 0.0536(14)	0.0420(14)	0.0022(14)	-0.0107(12)	-0.0010(12)	-0.0070(11)
C7	0.0500(14) 0.0523(13)	0.0400(13)	0.0401(13) 0.0485(13)	-0.01+3(11)	-0.0031(11)	-0.0032(10)
	0.0323(13)	0.0449(13)	0.0403(13)	-0.0203(11)	-0.0100(10)	0.0021(10)
	0.0441(12) 0.0365(11)	0.0400(13)	0.0332(11)	-0.0223(10)	-0.0149(9)	0.0020(9)
C10	0.0303(11)	0.0430(13)	0.0300(11)	-0.0194(9)	-0.0092(9)	0.0013(9)
C11	0.0400(11)	0.0370(12)	0.0301(11)	-0.0200(3)	-0.0093(9)	0.0013(9)
C12	0.0440(12)	0.0447(13)	0.0411(12) 0.0272(11)	-0.0231(10)	-0.0120(9)	0.0003(10)
012	0.0300(11)	0.0420(12)	0.0373(11)	-0.0170(10)	-0.0091(9)	-0.0011(9)
C13	0.0471(12)	0.0435(13)	0.0374(11)	-0.0150(10)	-0.0120(9)	-0.0026(9)
014	0.0506(14)	0.0501(14)	0.0406(12)	-0.0237(11)	-0.0144(10)	0.0026(10)
	0.0646(15)	0.0582(15)	0.0393(12)	-0.0292(12)	-0.0185(11)	0.0033(10)
	0.0885(19)	0.0786(19)	0.0527(15)	-0.0523(16)	-0.0341(14)	0.0091(13)
017	0.0703(16)	0.0674(17)	0.0498(13)	-0.0483(14)	-0.0267(12)	0.0147(12)
C18	0.0499(13)	0.0474(14)	0.0396(12)	-0.0257(11)	-0.0181(10)	0.0061(10)
C19	0.0480(14)	0.0745(18)	0.0514(14)	-0.0338(13)	-0.0047(11)	0.0050(12)
C20	0.0533(15)	0.085(2)	0.0650(17)	-0.0234(14)	0.0015(13)	-0.0126(14)
C21	0.0426(12)	0.0401(12)	0.0425(12)	-0.0209(10)	-0.0062(9)	-0.0051(9)
C22	0.0450(12)	0.0493(14)	0.0431(12)	-0.0199(10)	-0.0026(10)	-0.0061(10)
C23	0.0637(16)	0.0557(16)	0.0518(14)	-0.0289(13)	0.0089(12)	-0.0094(11)
C24	0.0468(14)	0.0606(17)	0.0746(18)	-0.0304(12)	0.0063(13)	-0.0166(13)
C25	0.0400(13)	0.0584(16)	0.0710(17)	-0.0209(11)	-0.0096(12)	-0.0086(13)
C26	0.0417(12)	0.0515(14)	0.0539(13)	-0.0202(11)	-0.0134(10)	-0.0028(11)
C27	0.0429(12)	0.0420(12)	0.0370(11)	-0.0210(10)	-0.0103(9)	-0.0017(9)
C28	0.0374(11)	0.0428(12)	0.0302(10)	-0.0217(9)	-0.0124(8)	0.0014(9)
C29	0.0338(11)	0.0420(12)	0.0357(11)	-0.0204(9)	-0.0086(8)	0.0002(9)
C30	0.0384(11)	0.0384(12)	0.0386(11)	-0.0202(9)	-0.0081(9)	0.0003(9)
C31	0.0322(11)	0.0452(13)	0.0363(11)	-0.0196(9)	-0.0059(8)	-0.0011(9)
C32	0.0394(11)	0.0443(13)	0.0345(11)	-0.0188(10)	-0.0093(9)	0.0016(9)
C33	0.0529(14)	0.0580(15)	0.0438(12)	-0.0342(12)	-0.0180(10)	0.0096(10)
C34	0.0785(17)	0.0741(18)	0.0486(14)	-0.0470(15)	-0.0314(13)	0.0136(12)
C35	0.093(2)	0.0726(18)	0.0443(14)	-0.0486(16)	-0.0343(13)	0.0196(12)
C36	0.0725(16)	0.0600(16)	0.0424(13)	-0.0374(13)	-0.0192(11)	0.0145(11)
C37	0.0498(13)	0.0504(14)	0.0367(11)	-0.0257(11)	-0.0123(10)	0.0019(10)
C38	0.0385(11)	0.0416(12)	0.0326(11)	-0.0186(10)	-0.0135(9)	0.0062(9)
C39	0.0345(11)	0.0610(15)	0.0406(12)	-0.0231(10)	-0.0026(9)	-0.0012(10)
C40	0.0460(13)	0.0602(15)	0.0475(13)	-0.0186(11)	-0.0084(10)	-0.0007(11)

The general temperature factor expression: $exp(-2\pi^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^{*b^*}U_{12}hk + 2a^{*}c^{*}U_{13}hl + 2b^{*}c^{*}U_{23}kl))$

fragmer	nt: 1				
	O(1)	O(2)	O(3)	O(4)	O(5)
	C(1)	C(2)	C(3)	C(4)	C(5)
	C(6)	C(7)	C(8)	C(9)	C(10)
	C(11)	C(12)	C(13)	C(14)	C(15)
	C(16)	C(17)	C(18)	C(19)	C(20)
fragmer	nt: 2				
	O(6)	O(7)	O(8)	O(9)	O(10)
	C(21)	C(22)	C(23)	C(24)	C(25)
	C(26)	C(27)	C(28)	C(29)	C(30)
	C(31)	C(32)	C(33)	C(34)	C(35)
	C(36)	C(37)	C(38)	C(39)	C(40)

Table 5. Bond lengths (Å)

atom	atom	distance	atom	atom	distance
01	C8	1.457(3)	O1	C11	1.349(3)
O2	C11	1.208(3)	O3	C10	1.338(3)
O4	C18	1.203(3)	O5	C18	1.319(2)
O5	C19	1.465(3)	O6	C28	1.453(2)
O6	C31	1.350(3)	07	C31	1.209(3)
O8	C30	1.337(3)	O9	C38	1.208(3)
O10	C38	1.331(2)	O10	C39	1.468(2)
C1	C2	1.392(3)	C1	C6	1.392(3)
C1	C7	1.511(3)	C2	C3	1.388(3)
C3	C4	1.379(3)	C4	C5	1.378(4)
C5	C6	1.387(3)	C7	C8	1.525(3)
C8	C9	1.521(3)	C8	C18	1.538(3)
C9	C10	1.342(3)	C9	C12	1.468(3)
C10	C11	1.461(3)	C12	C13	1.389(3)
C12	C17	1.395(4)	C13	C14	1.384(3)
C14	C15	1.381(4)	C15	C16	1.371(3)
C16	C17	1.381(3)	C19	C20	1.455(4)
C21	C22	1.391(3)	C21	C26	1.391(3)
C21	C27	1.516(3)	C22	C23	1.384(3)
C23	C24	1.376(4)	C24	C25	1.380(3)
C25	C26	1.387(3)	C27	C28	1.535(3)
C28	C29	1.527(3)	C28	C38	1.535(3)
C29	C30	1.343(3)	C29	C32	1.470(3)
C30	C31	1.463(3)	C32	C33	1.405(4)
C32	C37	1.397(3)	C33	C34	1.379(3)
C34	C35	1.376(4)	C35	C36	1.383(4)
C36	C37	1.383(3)	C39	C40	1.498(3)

Table 6. Bond lengths involving hydrogens (Å)

atom	atom	distance	atom	atom	distance
O3	H3A	0.840	O8	H8	0.840
C2	H2	0.950	C3	H3	0.950
C4	H4	0.950	C5	H5	0.950
C6	H6	0.950	C7	H7A	0.990
C7	H7B	0.990	C13	H13	0.950
C14	H14	0.950	C15	H15	0.950
C16	H16	0.950	C17	H17	0.950
C19	H19A	0.990	C19	H19B	0.990
C20	H20A	0.980	C20	H20B	0.980
C20	H20C	0.980	C22	H22	0.950
C23	H23	0.950	C24	H24	0.950
C25	H25	0.950	C26	H26	0.950
C27	H27A	0.990	C27	H27B	0.990
C33	H33	0.950	C34	H34	0.950
C35	H35	0.950	C36	H36	0.950
C37	H37	0.950	C39	H39A	0.990
C39	H39B	0.990	C40	H40A	0.980
C40	H40B	0.980	C40	H40C	0.980

Table 7. Bond angles (⁰)

atom	atom	atom	angle	atom	atom	atom	angle
	01	C11	109.48(15)	C18	05	C19	117.3(2)
028	06		110.00(14)	038	010	039	110.09(18)
02			118.1(2)	02		C7	120.74(18)
			121.1(2)		02	C3	121.4(2)
62	63	C4	119.2(2)	03	C4	C5	120.7(2)
C4	C5	06	119.8(2)	01	C6	C5	120.8(2)
C1	C7	68	113.4(2)	01	60	C7	107.28(15)
01	C8	C9	104.60(18)	01	C8	C18	104.81(15)
C7	C8	C9	114.00(15)	C7	60	C18	110.82(19)
C9	C8	C18	114.44(16)	C8	C9	C10	107.00(17)
C8	C9	C12	122.9(2)	C10	C9	C12	129.96(19)
03	C10	C9	128.38(18)	03	C10	C11	121.4(2)
C9	C10	C11	110.18(19)	01	C11	02	121.33(18)
01	C11	C10	108.72(19)	02	C11	C10	130.0(2)
C9	C12	C13	120.4(2)	C9	C12	C17	121.67(19)
C13	C12	C17	117.90(19)	C12	C13	C14	121.1(2)
C13	C14	C15	120.2(2)	C14	C15	C16	119.3(2)
C15	C16	C17	121.0(3)	C12	C17	C16	120.5(2)
04	C18	O5	125.3(2)	O4	C18	C8	123.77(18)
O5	C18	C8	111.0(2)	O5	C19	C20	107.9(2)
C22	C21	C26	118.7(2)	C22	C21	C27	120.70(19)
C26	C21	C27	120.59(17)	C21	C22	C23	120.4(2)
C22	C23	C24	120.1(2)	C23	C24	C25	120.6(2)
C24	C25	C26	119.2(2)	C21	C26	C25	121.0(2)
C21	C27	C28	111.68(18)	O6	C28	C27	107.42(14)
O6	C28	C29	104.35(17)	O6	C28	C38	106.34(13)
C27	C28	C29	114.20(14)	C27	C28	C38	111.32(18)
C29	C28	C38	112.52(15)	C28	C29	C30	106.96(17)
C28	C29	C32	123.68(19)	C30	C29	C32	129.20(19)
08	C30	C29	128.24(18)	O8	C30	C31	121.5(2)
C29	C30	C31	110.24(19)	O6	C31	07	121.84(17)
O6	C31	C30	108.42(18)	07	C31	C30	129.7(2)
C29	C32	C33	121.14(19)	C29	C32	C37	120.5(2)
C33	C32	C37	118.28(19)	C32	C33	C34	120.1(2)
C33	C34	C35	121.0(3)	C34	C35	C36	119.7(2)
C35	C36	C37	120.1(2)	C32	C37	C36	120.8(2)
O9	C38	O10	125.18(18)	O9	C38	C28	123.64(16)
O10	C38	C28	111.18(19)	O10	C39	C40	109.27(16)

Table 8. Bond angles involving hydrogens (⁰)

atom	atom	atom	angle	atom	atom	atom	angle
C10	O3	H3A	109.5	C30	O8	H8	109.5
C1	C2	H2	119.3	C3	C2	H2	119.3
C2	C3	H3	120.4	C4	C3	H3	120.4
C3	C4	H4	119.6	C5	C4	H4	119.7
C4	C5	H5	120.1	C6	C5	H5	120.1
C1	C6	H6	119.6	C5	C6	H6	119.6
C1	C7	H7A	108.9	C1	C7	H7B	108.9
C8	C7	H7A	108.9	C8	C7	H7B	108.9
H7A	C7	H7B	107.7	C12	C13	H13	119.4
C14	C13	H13	119.4	C13	C14	H14	119.9
C15	C14	H14	119.9	C14	C15	H15	120.4
C16	C15	H15	120.4	C15	C16	H16	119.5
C17	C16	H16	119.5	C12	C17	H17	119.8
C16	C17	H17	119.7	O5	C19	H19A	110.1
O5	C19	H19B	110.1	C20	C19	H19A	110.1
C20	C19	H19B	110.1	H19A	C19	H19B	108.4
C19	C20	H20A	109.5	C19	C20	H20B	109.5
C19	C20	H20C	109.5	H20A	C20	H20B	109.5
H20A	C20	H20C	109.5	H20B	C20	H20C	109.5
C21	C22	H22	119.8	C23	C22	H22	119.8
C22	C23	H23	119.9	C24	C23	H23	119.9
C23	C24	H24	119.7	C25	C24	H24	119.7
C24	C25	H25	120.4	C26	C25	H25	120.4
C21	C26	H26	119.5	C25	C26	H26	119.5
C21	C27	H27A	109.3	C21	C27	H27B	109.3
C28	C27	H27A	109.3	C28	C27	H27B	109.3
H27A	C27	H27B	107.9	C32	C33	H33	120.0
C34	C33	H33	120.0	C33	C34	H34	119.5
C35	C34	H34	119.5	C34	C35	H35	120.1
C36	C35	H35	120.1	C35	C36	H36	120.0
C37	C36	H36	120.0	C32	C37	H37	119.6
C36	C37	H37	119.6	O10	C39	H39A	109.8
O10	C39	H39B	109.8	C40	C39	H39A	109.8
C40	C39	H39B	109.8	H39A	C39	H39B	108.3
C39	C40	H40A	109.5	C39	C40	H40B	109.5
C39	C40	H40C	109.5	H40A	C40	H40B	109.5
H40A	C40	H40C	109.5	H40B	C40	H40C	109.5

Table 9. Torsion Angles(⁰) (Those having bond angles > 160 or < 20 degrees are excluded.)

atom1	atom2	atom3	atom4	angle	atom1	atom2	atom3	atom4	angle
C8	01	C11	02	-177.97(15)	C8	01	C11	C10	1.39(18)
C11	01	C8	C7	119.85(15)	C11	01	C8	C9	-1.56(17)
C11	01	C8	C18	-122.29(14)	C18	O5	C19	C20	142.91(17)
C19	O5	C18	O4	4.3(3)	C19	O5	C18	C8	-174.79(14)
C28	06	C31	07	178.65(14)	C28	06	C31	C30	-1.18(16)
C31	06	C28	C27	-119 72(14)	C31	06	C28	C29	1 86(15)
C31	06	C28	C38	121 00(13)	C38	010	C39	C40	88 84(18)
C30	010	C38	\cap	6 1 (3)	C30	010	C38	C28	-173 17(12)
C2	C1	C30	03	1.1(3)	C6	C_1	C30	C20	-175.17(12)
02		C0 C7	C0	1.4(3)	C0 C7		02	C3	-0.4(3)
02				04.0(2)	07		02		179.20(17)
				-95.9(2)				05	-178.25(16)
	62	63	C4	-0.7(3)	62	03	C4	05	0.9(3)
63	C4	65	6	0.2(3)	C4	C5	6	01	-1.3(3)
C1	C7	C8	01	-64.0(2)	C1	C7	C8	C9	51.3(2)
C1	C7	C8	C18	-177.86(14)	01	C8	C9	C10	1.13(17)
01	C8	C9	C12	177.42(13)	01	C8	C18	04	-120.1(2)
01	C8	C18	O5	59.06(19)	C7	C8	C9	C10	-115.73(18)
C7	C8	C9	C12	60.6(2)	C7	C8	C18	O4	-4.7(3)
C7	C8	C18	O5	174.47(15)	C9	C8	C18	O4	125.9(2)
C9	C8	C18	O5	-54.9(2)	C18	C8	C9	C10	115.24(18)
C18	C8	C9	C12	-68.5(2)	C8	C9	C10	O3	179.22(15)
C8	C9	C10	C11	-0.35(19)	C8	C9	C12	C13	-161.15(15)
C8	C9	C12	C17	16.0(2)	C10	C9	C12	C13	14.2(3)
C10	C9	C12	C17	-168.62(17)	C12	C9	C10	O3	3.3(3)
C12	C9	C10	C11	-176.28(16)	O3	C10	C11	01	179.75(14)
O3	C10	C11	O2	-1.0(3)	C9	C10	C11	01	-0.6(2)
C9	C10	C11	O2	178.64(18)	C9	C12	C13	C14	176.89(14)
C9	C12	C17	C16	-176.73(15)	C13	C12	C17	C16	0.5(3)
C17	C12	C13	C14	-0.4(3)	C12	C13	C14	C15	0.4(3)
C13	C14	C15	C16	-0.5(3)	C14	C15	C16	C17	0.6(3)
C15	C16	C17	C12	-0.6(3)	C22	C21	C26	C25	-1.0(3)
C26	C21	C22	C23	0.8(3)	C22	C21	C27	C28	95 5(2)
C27	C21	C22	C23	-176 85(16)	C26	C21	C27	C28	-821(2)
C27	C21	C26	C25	176 62(16)	C21	C22	C23	C24	0.2(3)
C22	C23	C24	C25	-1 1(3)	C23	C24	C25	C26	0.2(0)
C24	C25	C26	C21	0.2(3)	C21	C27	C28	020	67 96(18)
C_{21}	C27	C28	C20	-172(3)	C_{21}	C27	C28	C38	$-176\ 00(13)$
021	C28	C20	C30	-1.88(16)	021	C28	C20	C32	-170.00(13) -17773(12)
00	C28	C38	000	126 /7/17)	00	C28	C38	010	-517.75(12)
C07	C20	C30	C30	120.47(17)	C07	C20	C30	C22	-54.27(10)
C27	C20	C29	00	113.11(17)	C27	C20	C29	010	-00.7(2)
C27	C20	C30	09	9.0(2)	C27	C20	C30	010	-170.97(13)
C29	C20	C30	09	-119.00(19)	C29	020	C30	010	59.4(2)
	C28	029	C30	-116.73(16)		C28	029	032	67.4(2)
028	029	030	08	-177.49(15)	028	029	030	0.31	1.25(18)
C28	C29	032	633	-12.7(2)	028	029	032	037	164.82(14)
030	029	032	033	172.39(16)	030	029	032	03/	-10.1(3)
032	C29	030	08	-1.9(3)	032	C29	030	C31	1/6./9(15)
08	C30	C31	06	1/8./4(14)	08	C30	C31	07	-1.1(3)
C29	C30	C31	06	-0.09(19)	C29	C30	C31	07	-1/9.91(16)
C29	C32	C33	C34	175.54(14)	C29	C32	C37	C36	-176.61(14)

Table 9. Torsion angles (⁰) (continued)

atom1	atom2	atom3	atom4	angle	atom1	atom2	atom3	atom4	angle
C33	C32	C37	C36	1.0(2)	C37	C32	C33	C34	-2.1(3)
C32	C33	C34	C35	1.3(3)	C33	C34	C35	C36	0.7(3)
C34	C35	C36	C37	-1.7(3)	C35	C36	C37	C32	0.9(3)

Table 10. Possible hydrogen bonds

Donor	Н	Acceptor	DA	D-H	HA	D-HA	
O3	НЗА	O2 .	2.9426(18)	0.84	2.56	109.10	intramol.
O3	H3A	O71	2.741(2)	0.84	1.95	157.53	
O8	H8	O2 ²	2.641(2)	0.84	1.85	156.49	
O8	H8	07	2.9418(18)	0.84	2.56	109.04	intramol.

Symmetry Operators:

(1) X,Y+1,Z (2) X,Y-1,Z

atom	atom	distance	atom	atom	distance
01	O3	3.5457(19)	O1	O4	3.324(3)
01	O5	2.718(2)	O1	C1	2.951(2)
01	C2	3.108(2)	O2	O3	2.9426(18)
O2	C8	3.443(3)	O2	C9	3.474(3)
O3	C12	3.117(3)	O3	C13	3.024(3)
04	C7	2.782(3)	04	C9	3.547(3)
04	C17	3.528(3)	04	C19	2.707(3)
05	C9	2.905(2)	05	C10	3.400(3)
05	C11	3.320(3)	06	08	3.5435(19)
06	09	3.384(2)	06	O10	2,7092(18)
06	C21	2.973(2)	06	C26	3 091(2)
07	08	2 9418(18)	07	C28	3449(3)
07	C29	3 477(3)	08	C32	3 101(3)
08	C37	2 984(3)	09	C27	2802(2)
09	C29	3 492(3)	09	C33	3407(2)
00	C39	2 708(2)	09	C40	3 351(2)
010	C29	2.100(2)	010	C30	3.001(2)
010	C31	2.317(2)	C1	C30	2785(3)
C1		2 005(3)	C1	C10	2.700(0)
C1	C11	2.333(3)		C10	2.473(3)
C_2		3.434(3) 2.227(2)	C2	C11	2.739(3)
C2		3.327(3)	C2		3.000(3)
		2.771(3)			3.429(3) 2.479(2)
	C9	3.340(3) 2.400(2)			3.470(3) 2.220(2)
07	C10	3.400(3) 3.326(3)	C7		3.339(3)
		3.220(3)	C7		3.340(3) 2.050(2)
		3.048(3)			3.050(3)
		3.412(3)	011		3.338(4)
012	C15	2.796(3)	C12		3.308(3)
	C16	2.746(4)	C14	017	2.758(3)
C17	C18	3.241(3)	C18	C20	3.496(3)
C21	C24	2.778(3)	C21	C29	2.943(2)
C21	C30	3.429(3)	C21	C31	3.457(3)
C21	C32	3.570(3)	C22	C25	2.774(3)
C22	C28	3.405(3)	C22	C29	3.278(3)
C22	C32	3.370(3)	C23	C26	2.758(3)
C26	C28	3.284(3)	C26	C31	3.413(3)
C27	C30	3.410(3)	C27	C31	3.351(3)
C27	C32	3.258(3)	C27	C33	3.344(3)
C28	C33	3.057(3)	C30	C37	3.039(3)
C30	C38	3.404(3)	C31	C38	3.348(3)
C32	C35	2.792(3)	C32	C38	3.280(3)
C33	C36	2.771(3)	C33	C38	3.223(3)
C34	C37	2.758(4)	C38	C40	3.147(3)

atom	atom	distance	atom	atom	distance
01	H2	2.794	01	H7A	2.569
01	H7B	3.255	O2	H3A	2.559
O3	H13	2.373	O4	H7A	2.689
04	H7B	2.694	O4	H17	2.659
O4	H19A	3.115	O4	H19B	2.357
O5	H17	3.356	O5	H20A	3.219
O5	H20B	2.560	O5	H20C	2.537
O6	H26	2.778	O6	H27A	3.260
O6	H27B	2.552	07	H8	2.559
08	H37	2.317	O9	H27A	2.627
O9	H27B	2.826	O9	H33	2.541
O9	H39A	2.377	O9	H39B	3.589
09	H40C	2.938	O10	H33	3.444
O10	H40A	3.266	O10	H40B	2.625
O10	H40C	2.601	C1	H3	3.280
C1	H5	3.272	C2	H4	3.245
C2	H6	3.248	C2	H7A	2.643
C2	H7B	3.285	C3	H5	3.252
C4	H2	3.242	C4	H6	3.247
C5	H3	3.254	C6	H2	3.247
C6	H4	3.249	C6	H7A	3.253
C6	H7B	2.606	C7	H2	2.672
C7	H6	2.683	C7	H17	2.968
C8	H2	3.318	C8	H6	3.488
C8	H17	2.723	C9	H3A	3.066
C9	H6	3.223	C9	H7A	3.386
C9	H7B	2.827	C9	H13	2.636
C9	H17	2.672	C10	H13	2.760
C11	H2	3.363	C11	H3A	2.424
C12	H6	2.970	C12	H7B	3.036
C12	H14	3.269	C12	H16	3.264
C13	H6	3.349	C13	H15	3.256
C13	H17	3.247	C14	H16	3.232
C15	H13	3.250	C15	H17	3.247
C16	H14	3.233	C17	H6	3.245
C17	H7B	2.784	C17	H13	3.247
C17	H15	3.253	C18	H7A	2.679
C18	H7B	2.711	C18	H17	2.590
C18	H19A	2.883	C18	H19B	2.458
C18	H20C	3.520	C21	H23	3.264
C21	H25	3.275	C22	H24	3.248
C22	H26	3.251	C22	H27A	2.609
C22	H27B	3.258	C23	H25	3.252
C24	H22	3.248	C24	H26	3.243
C25	H23	3.250	C26	H22	3.254
C26	H24	3.245	C26	H27A	3.298
C26	H27B	2.660	C27	H22	2.681
C27	H26	2.674	C27	H33	2.940
C28	H22	3.497	C28	H26	3.292
C28	H33	2.727	C29	H8	3.066
C29	H22	3.247	C29	H27A	2.877

							o l			
Table	40				A	~ ~ ~ /	A :	a s can la china a	مصامينها	
I anie i	1.2	Intramolecillar	contacte	1DCC	than	3 60 4	Δır	wawinc	i nvarac	iene
Iabic	اک ا	muanoicculai	COINCOLS	1000	uiaii	0.007	\ II	I V OI VII IC		
										,

atom	atom	distance	atom	atom	distance
C29	H27B	3.399	C29	H33	2.676
C29	H37	2.650	C30	H37	2.749
C31	H8	2.426	C31	H26	3.269
C32	H22	2.949	C32	H27A	3.116
C32	H34	3.268	C32	H36	3.273
C33	H22	3.088	C33	H27A	2.809
C33	H35	3.253	C33	H37	3.266
C33	H40C	3.495	C34	H36	3.244
C35	H33	3.252	C35	H37	3.251
C36	H34	3.242	C37	H22	3.434
C37	H33	3.267	C37	H35	3.255
C38	H27A	2.690	C38	H27B	2.749
C38	H33	2.587	C38	H39A	2.483
C38	H39B	3.159	C38	H40B	3.534
C38	H40C	2.916	H2	H3	2.334
H2	H7A	2.495	H2	H7B	3.557
H3	H4	2.330	H3A	H13	3.135
H4	H5	2.325	H5	H6	2.333
H6	H7A	3.515	H6	H7B	2.433
H6	H17	3.532	H7B	H17	2.348
H8	H37	3.104	H13	H14	2.325
H14	H15	2.335	H15	H16	2.319
H16	H17	2.319	H19A	H20A	2.323
H19A	H20B	2.309	H19A	H20C	2.818
H19B	H20A	2.306	H19B	H20B	2.818
H19B	H20C	2.326	H22	H23	2.331
H22	H27A	2.424	H22	H27B	3.508
H22	H33	3.339	H23	H24	2.321
H24	H25	2.331	H25	H26	2.336
H26	H27A	3.565	H26	H27B	2.507
H27A	H33	2.319	H33	H34	2.321
H33	H40C	3.077	H34	H35	2.321
H35	H36	2.335	H36	H37	2.327
H39A	H40A	2.340	H39A	H40B	2.848
H39A	H40C	2.364	H39B	H40A	2.358
H39B	H40B	2.345	H39B	H40C	2.848

Table 13. Intermolecular contacts less than 3.60 Å

atom	atom	distance	atom	atom	distance
O1	C26	3.526(3)	O2	O7 ¹	3.270(2)
O2	O8 ¹	2.641(2)	O2	C30 ¹	3.589(3)
O3	O7 ¹	2.741(2)	O3	C5 ²	3.414(2)
O3	C13 ²	3.596(2)	O3	C14 ²	3.551(3)
O3	C40 ³	3.483(2)	O4	C3 ⁴	3.473(3)
O6	C2	3.347(3)	07	O2 ⁵	3.270(2)
07	O3 ⁵	2.741(2)	07	C15 ⁶	3.574(2)
08	O2 ⁵	2.641(2)	O8	C20 ⁷	3.301(3)
08	C36 ⁸	3.536(3)	O9	C19 ⁹	3.541(3)
O9	C25 ⁹	3.476(3)	C2	O6	3.347(3)
C3	O4 ⁹	3.473(3)	C4	C4 ¹⁰	3.436(3)
C5	O3 ²	3.414(2)	C5	C13 ²	3.542(3)
C6	C7 ⁶	3.427(3)	C7	C6 ⁶	3.427(3)
C13	O3 ²	3.596(2)	C13	C5 ²	3.542(3)
C14	O3 ²	3.551(3)	C15	O7 ⁶	3.574(2)
C19	O9 ⁴	3.541(3)	C20	O8 ³	3.301(3)
C24	C24 ¹¹	3.456(3)	C25	O9 ⁴	3.476(3)
C26	O1	3.526(3)	C30	O2 ⁵	3.589(3)
C36	O8 ⁸	3.536(3)	C40	O3 ⁷	3.483(2)

Symmetry Operators:

- (1) X,Y+1,Z
- (3) X-1,Y+1,Z
- (5) X,Y-1,Z
 (7) X+1,Y-1,Z
- (9) X+1,Y,Z
- (11) -X,-Y,-Z+2

- (2) -X+1,-Y+1,-Z+1
 - (4) X-1,Y,Z
 - (6) -X+1,-Y,-Z+1 (8) -X+1,-Y-1,-Z+2

 - (10) -X+2,-Y,-Z+1

Table 14. Intermolecular contacts less than 3.60 Å involving hydrog	ens
---	-----

atom	atom	distance	atom	atom	distance
01	H26	2.694	01	H27B	2.911
02	H8 ¹	1.849	02	H14 ²	3.568
02	H27B	3.246	O2	H35 ³	3.498
02	H40A ⁴	3.131	O2	H40B ⁴	3.358
O3	H5 ²	2.778	O3	H6 ²	3.508
O3	H13 ²	3.412	O3	H14 ²	3.330
O3	H39B ⁴	3.059	O3	H40A ⁴	2.890
O3	H40B⁴	3.484	O4	H3 ⁵	2.615
04	H4 ⁵	3.554	04	H5 ⁶	3.277
04	H25	3 497	04	H26	3 164
04	H39A ⁵	2 700	05	H15 ⁷	3 159
05	H26	3 358	05	H40B ⁴	3 312
00	H20	2 528	00	H7A	2.840
00		2.520	00		2.040
07		2 500	07		2 5 4 2
07		3.399	07		3.342
07		2.004	08		3.510
08	H20A ³	2.675	08	H20B ^o	3.123
08	H36 ¹⁰	3.023	09	H2	3.232
09	H3	3.354	09	H19B''	2.625
09	H25 ¹¹	2.581	O10	H2	3.242
O10	H3	3.486	O10	H15 ⁶	3.006
O10	H16 ⁶	3.236	O10	H20B ⁹	3.413
C1	H6 ⁶	3.453	C1	H7B ⁶	3.289
C3	H4 ¹²	3.384	C3	H14 ²	3.172
C3	H16 ⁶	3.412	C3	H19A ¹¹	3.593
C3	H39A	3.534	C4	H4 ¹²	2.933
C4	H13 ²	3.311	C4	H14 ²	3.155
C4	H16 ¹¹	3.358	C4	H17 ¹¹	3.405
C5	H4 ¹²	3.586	C5	H7B ⁶	3.084
C5	H13 ²	2.855	C5	H14 ²	3.575
C6	H7A ⁶	3.437	C6	H7B ⁶	2.642
C6	H13 ²	3 288	C7		3 038
C8	H26	3 311	C10	H14 ²	3 547
C10	H39B4	3 523	C10	H40A ⁴	3 303
C10	H40B ⁴	3 340	C11	H81	3 001
C11	H27B	3 /03	C11		3 3/0
C11		3.751	C13		3 513
C12		2 600	C13	ПЭ ЦЭЛ2	2.213
C14		2 106	C14 C15		3.200
C14		3.190	C15 C16		J. 102
	П390°	3.312			3.120
	H39B°	3.254	017		3.140
C18	H3°	3.493	C18	H26	2.988
C19	H3 ³	3.385	C19	H14'	3.545
C19	H15'	3.213	C19	H25	3.350
C20	H23 ¹³	3.419	C20	H25	3.485
C20	H34°	3.362	C20	H35°	3.334
C20	H37⁴	3.545	C20	H40B ⁴	3.470
C21	$H22^3$	3.517	C21	H34 ³	3.595
C22	H22 ³	3.248	C22	H27A ³	3.037
C23	H20A ¹³	3.586	C23	H24 ¹³	3.335
C23	H27A ³	3.325	C23	H33 ³	3.467

Table 14. Intermolecular contacts less than 3.60 Å involving hydrogens

atom	atom	distance	atom	atom	distance
023	H34 ³	3.521	023	H36 ¹⁰	3.233
C24	H24 ¹³	2.968	C24	H33°	3.581
C24	H34°	3.405	C24	H34 ³	3.367
C24	H36 ¹⁰	3.217	C24	H40C ⁵	3.349
C25	H19B	3.417	C25	H20C	3.227
C25	H34 ³	3.307	C25	H40C⁵	3.041
C26	H20C	3.504	C26	H34 ³	3.414
C27	H2	3.508	C27	H22 ³	3.303
C28	H2	3.139	C29	H20B ⁹	3.208
C30	H20A ⁹	3.364	C30	H20B ⁹	3.155
C31	H3A ⁸	3.085	C31	H7A	3.370
C31	H15 ⁶	3.474	C31	H40A⁵	3.291
C32	H20B ⁹	3.320	C33	H24 ¹¹	3.265
C34	H20C ³	3.159	C34	H24 ¹¹	3.133
C35	H20C ³	3.283	C35	H40B ¹⁴	3.377
C35	$H40C^{14}$	3.468	C36	H37 ¹⁰	3.518
C36	$H40C^{14}$	3 557	C37	H20A ⁹	3 311
C37	H20B ⁹	3 489	C37	H37 ¹⁰	3 337
C38	H20B	2 909	C38	H3	3 518
C38	H25 ¹¹	2.505	C30	H3	3 330
C30	нд5 Цб12	3 /30	C30	H15 ⁶	3 /01
C30	115 L166	2 210	C30	L115	2 400
C39		J.Z 10 2 215	C39		3.490
C40	ПЗА ⁻ ЦЭБ11	3.310 2.222	C40		3.000
C40		3.33Z 2.57E	U40	H35 ⁻¹	3.029
040 ロク		0.040 0.020		010	2.020
ПZ ЦЭ	09	J.ZJZ 2 E09		010	3.242
ПZ ЦЭ	C27	3.000			3.139
ПZ Ц2	C30	2.909			2.907
പാ	04	2.010	ПЭ ЦЭ	C10 ¹¹	3.304
പാ	C10 ¹¹	3.400 2.205	ПЭ ЦЭ	C10 ¹⁰	3.493 2.549
പാ	C19	3.300 2.220	ПЭ ЦЭ	U30 U412	3.310
п о		3.330	ПЭ 112		3.400
⊓ാ ⊔ാ		3.403 2.507	ПЭ ЦЭ		3.400 2.400
п о		3.307	ПЭ 112		3.120
⊓ാ ⊔ാ		2.070	ПЭ ЦЭЛ	П39А О7 ¹	2.720
പാമ		3.303 2.200	ПОА	C211	1.940
ПЗА Цэл	C14-	J.∠OU 2.215	ПЗА		3.000
ПЗА Цал		3.313	ПЗА	ПО ⁻ Цо1	3.005
ПЗА Цэл		3.323	ПЗА		3.097
ПЗА ЦЭЛ		3.003	ПОА		3.317
പാപ	Π40A [·]	2.342	ПЭА		3.437
	C 4 ¹²	3.334		$C5^{12}$	3.304
	$C4^{-1}$	2.933		$C3^{-1}$	3.300
		3.128			3.140
	ПЗ'-	3.40U 2.555			2.004
		3.555			3.385
□4 U <i>E</i>		2.539			∠.570 2.077
ПЭ Ц <i>Е</i>	0.3^{-1}	2.110 2.542		04°	J.211
СП Ц с	U13- U2A2	3.313 2.095			3.439 2 F 40
115 115		3.000 2.01 <i>1</i>	п:) Ц <i>г</i>	П/А° Ц192	3.349 2 01 1
i IJ		J.Z 14	CI I	1113	2.014

				0		
Table 4						
I ANIA 14	4 Intermolecular	contacte	lece than	3 60 4	Involvina	nvaraans
		COINCOLS		0.007		I I V U U U U U U U U
					J	

atom H5	atom H16 ¹¹	distance 3.383	atom H5	atom H39A ¹²	distance 3.257
H5	H39B ¹²	2.746	H6	O3 ²	3.508
H6	C1 ⁶	3.453	H6	C7 ⁶	3.038
H6	H3A ²	3.525	H6	H7A ⁶	2.887
H6	H7B ⁶	2.479	H6	H13 ²	3.504
H7A	O6	2.840	H7A	07	3.101
H7A	C6 ⁶	3.437	H7A	C31	3.370
H7A	H5 ⁶	3.549	H7A	H6 ⁶	2.887
H7A	H26	3.042	H7B	C1 ⁶	3.289
H7B	C5 ⁶	3.084	H7B	C6 ⁶	2.642
H7B	H5 ⁶	3.214	H7B	H6 ⁶	2.479
H7B	H7B ⁶	3.324	H8	O2 ⁸	1.849
H8	C11 ⁸	3.001	H8	H3A ⁸	3.097
H8	H19A ⁹	3.361	H8	H20A ⁹	3.015
H8	H20B ⁹	3.533	H8	H36 ¹⁰	3.196
H8	H40A ⁵	3.182	H13	$O3^2$	3.412
H13	$C4^2$	3.311	H13	$C5^2$	2.855
H13	$C6^2$	3.288	H13	C13 ²	3.600
H13	H4 ²	3.555	H13	$H5^2$	2.814
H13	$H6^2$	3.504	H13	H13 ²	3.009
H14	02^{2}	3.568	H14	$O3^2$	3.330
H14	07^{6}	3 599	H14	$C3^2$	3 172
H14	$C4^2$	3 155	H14	$C5^2$	3 575
H14	$C10^{2}$	3 547	H14	C19 ⁷	3 545
H14	$H3^2$	3.403	H14	H3A ²	3.053
H14	$H4^2$	3.385	H14	H19A ⁷	2.602
H15	05^{7}	3,159	H15	$O7^6$	3.542
H15	$O10^{6}$	3.006	H15	C19 ⁷	3.213
H15	C31 ⁶	3.474	H15	C39 ⁶	3.491
H15	H19A ⁷	2.577	H15	H20B ⁷	3.269
H15	H39B ⁶	3.035	H16	O10 ⁶	3.236
H16	C3 ⁶	3.412	H16	C4 ⁵	3.358
H16	C39 ⁶	3.218	H16	H3 ⁶	3.488
H16	H4 ⁵	2.539	H16	H5 ⁵	3.383
H16	H39B ⁶	2.490	H17	C4 ⁵	3.405
H17	H3⁵	3.587	H17	H4 ⁵	2.576
H19A	O8 ⁴	3.510	H19A	C3 ⁵	3.593
H19A	C14 ⁷	3.196	H19A	C15 ⁷	3.182
H19A	H3 ⁵	3.128	H19A	H8⁴	3.361
H19A	H14 ⁷	2.602	H19A	H15 ⁷	2.577
H19B	O9 ⁵	2.625	H19B	C25	3.417
H19B	H3⁵	2.870	H19B	H25	2.632
H19B	H26	3.536	H19B	H39A⁵	3.105
H20A	O8 ⁴	2.675	H20A	C23 ¹³	3.586
H20A	C30 ⁴	3.364	H20A	C37 ⁴	3.311
H20A	H8 ⁴	3.015	H20A	H23 ¹³	2.668
H20A	H37 ⁴	2.871	H20B	O8 ⁴	3.123
H20B	O10 ⁴	3.413	H20B	C29 ⁴	3.208
H20B	C30 ⁴	3.155	H20B	C32 ⁴	3.320
H20B	C37 ⁴	3.489	H20B	C40 ⁴	3.535
H20B	H8 ⁴	3.533	H20B	H15 ⁷	3.269

Table 14. Intermolecular contacts less than 3.60 Å involving hydrogens

atom	atom	distance	atom	atom	distance
H20B	H35 ³	3.037	H20B	H37 ⁴	3.416
H20B	$H40B^4$	2.725	H20C	C25	3.227
H20C	C26	3.504	H20C	C34 ³	3.159
H20C	C35 ³	3.283	H20C	H23 ¹³	3.312
H20C	H25	2.967	H20C	H26	3.448
H20C	H34 ³	2.467	H20C	H35 ³	2.736
H20C	$H40B^4$	3.497	H22	C21 ³	3.517
H22	C22 ³	3.248	H22	C27 ³	3.303
H22	H22 ³	2.755	H22	H27A ³	2.510
H22	H27B ³	3.593	H23	C20 ¹³	3.419
H23	H20A ¹³	2.668	H23	H20C ¹³	3.312
H23	H24 ¹³	3.362	H23	H27A ³	3.061
H23	H33 ³	3.442	H23	H36 ¹⁰	3.363
H23	H37 ¹⁰	3.178	H24	C23 ¹³	3.335
H24	$C24^{13}$	2.968	H24	C33 ⁵	3.265
H24	$C34^{5}$	3 133	H24	H23 ¹³	3 362
H24	H24 ¹³	2 735	H24	H33 ⁵	2 773
H24	H34 ⁵	2 504	H24	H36 ¹⁰	3 321
H24	$H40C^5$	3 261	H25	04	3 497
H25	Ω^{95}	2 581	H25	C19	3 350
H25	C20	3 485	H25	$C38^{5}$	3 547
H25	C39 ⁵	3 490	H25	$C40^{5}$	3 332
H25	H19B	2 632	H25		2 967
H25	H335	3 494	H25	H3945	2.889
H25		3 409	H25	H40C ⁵	2.000
H26	01	2 694	H26	∩4	3 164
H26	05	2.004	H26	C8	3 311
H26	C18	2 988	H26	00 Н7Δ	3 042
H26	H19B	2.500	H26	H20C	3 448
H27A	$C_{22^{3}}$	3.037	H27A	C_{23}^{3}	3 3 2 5
H27A	H22 ³	2 510	H27A	H23 ³	3 061
H27R	$\cap 1$	2.010	H27R	$\cap 2$	3 246
H27B	C11	2.011	H27B	U2 H2	2 907
H27B	H22 ³	3 593	H33	$C_{23^{3}}$	3 467
H33	$C24^{11}$	3 581	H33	H23 ³	3 442
H33	H24 ¹¹	2 773	H33	H25 ¹¹	3 494
H34	$C_{2}O^{3}$	3 362	H34	$C21^{3}$	3 595
H34	C_{23^3}	3 521	H34	$C24^{11}$	3 405
H34	$C_{24^{3}}$	3 367	H34	$C_{25^{3}}$	3 307
H34	$C_{26^{3}}$	3 414	H34	H20C ³	2 467
H34	H24 ¹¹	2 504	H35	$\Omega^{2^{3}}$	2.407
H35	$C^{2}\Omega^{3}$	2.004	H35	C40 ¹⁴	3 020
H35	H20B3	3 037	H35	H20C3	2 736
H35	Η20D Η20Δ ¹⁴	3 331	H35	H40B ¹⁴	2.730
H35	H40C ¹⁴	2 840	H36	$O8^{10}$	3 023
H36	C_{23}^{10}	2.040	H36	$C24^{10}$	3 217
H36	C40 ¹⁴	3.545	H36	Hg ¹⁰	3 106
H36	H23 ¹⁰	3 363	HAR	H24 ¹⁰	3 221
H36	H37 ¹⁰	3 268	HJR	ΗΛΟΔ ¹⁴	3 111
H36		3 010	H27	$C^{2}\Omega^{9}$	3.545
H37	$C36^{10}$	3 518	H37	$C37^{10}$	3 3 3 7 7
		0.010	1.07		0.001

Table 14. Intermolecular contacts less than 3.60 Å involving hydrogens

atom	atom	distance	atom	atom	distance
H37	H20A ⁹	2.871	H37	H20B ⁹	3.416
H37	H23 ¹⁰	3.178	H37	H36 ¹⁰	3.268
H37	H37 ¹⁰	2.917	H39A	O4 ¹¹	2.700
H39A	C3	3.534	H39A	H3	2.720
H39A	H5 ¹²	3.257	H39A	H19B ¹¹	3.105
H39A	H25 ¹¹	2.889	H39B	O3 ⁹	3.059
H39B	C10 ⁹	3.523	H39B	C15 ⁶	3.512
H39B	C16 ⁶	3.254	H39B	H3	3.385
H39B	H3A ⁹	3.317	H39B	H5 ¹²	2.746
H39B	H15 ⁶	3.035	H39B	H16 ⁶	2.490
H40A	O2 ⁹	3.131	H40A	O3 ⁹	2.890
H40A	O7 ¹¹	2.654	H40A	C10 ⁹	3.303
H40A	C11 ⁹	3.349	H40A	C31 ¹¹	3.291
H40A	H3A ⁹	2.542	H40A	H8 ¹¹	3.182
H40A	H25 ¹¹	3.409	H40A	H35 ¹⁴	3.331
H40A	H36 ¹⁴	3.444	H40B	O2 ⁹	3.358
H40B	O3 ⁹	3.484	H40B	O5 ⁹	3.312
H40B	C10 ⁹	3.340	H40B	C11 ⁹	3.254
H40B	C20 ⁹	3.470	H40B	C35 ¹⁴	3.377
H40B	H3A ⁹	3.437	H40B	H20B ⁹	2.725
H40B	H20C ⁹	3.497	H40B	H35 ¹⁴	2.480
H40C	C24 ¹¹	3.349	H40C	C25 ¹¹	3.041
H40C	C35 ¹⁴	3.468	H40C	C36 ¹⁴	3.557
H40C	H24 ¹¹	3.261	H40C	H25 ¹¹	2.721
H40C	H35 ¹⁴	2.840	H40C	H36 ¹⁴	3.010

Symmetry Operators:

(1)	X,Y+1,Z	(2)	-X+1,-Y+1,-Z+1
(3)	-X+1,-Y,-Z+2	(4)	X-1,Y+1,Z
(5)	X-1,Y,Z	(6)	-X+1,-Y,-Z+1
(7)	-X,-Y+1,-Z+1	(8)	X,Y-1,Z
(9)	X+1,Y-1,Z	(10)	-X+1,-Y-1,-Z+2
(11)	X+1,Y,Z	(12)	-X+2,-Y,-Z+1
(13)	-X,-Y,-Z+2	(14)	-X+2,-Y-1,-Z+2