Supporting Information for

Syndioselective Ring-Opening Polymerization and Copolymerization of *trans*-1,4-Cyclohexadiene Carbonate Mediated by Achiral Metal- and Organo-Catalysts

Abdou Khadri Diallo,^{*a*} Evgueni Kirillov,^{*a*} Martine Slawinski,^{*b*} Jean-Michel Brusson,^{*c*} Sophie M. Guillaume^{*a*} and Jean-François Carpentier^{*a*}

Figure S1. Chiral GC trace of racemic (top) and enantio-enriched (83% ee) (bottom) *trans*-(R,R)-1,2-cyclohex-4-ene-diol.

Figure S2. ¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of *trans-rac-*CHDC.

Figure S3. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 23 °C) of *trans-rac-*CHDC.

Figure S4. ¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of enantio-enriched (83% ee) *trans-(R,R)*-CHDC.

Figure S5. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 23 °C) of enantio-enriched (83% ee) *trans-(R,R)*-CHDC.

Figure S6. ¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of a PCHDC prepared by ROP of *rac*-CHDC with the [(NNO)ZnEt]/BnOH system (Table 1, entry 3).

Figure S7. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 23 °C) of a PCHDC prepared by ROP of *rac*-CHDC with the [(NNO)ZnEt]/BnOH system (Table 1, entry 3).

Figure S8. ¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of a PCHDC prepared by ROP of *rac*-CHDC with the TBD/BnOH system (Table 1, entry 4).

Figure S9. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 23 °C) of a PCHDC prepared by ROP of *rac*-CHDC with the TBD/BnOH system (Table 1, entry 4).

Figure S10. ¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of a PCHDC prepared by ROP of (R,R)-CHDC with the [(NNO)ZnEt]/BnOH system (Table 1, entry 7).

Figure S11. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 23 °C) of a PCHDC prepared by ROP of (R,R)-CHDC with the [(NNO)ZnEt]/BnOH system (Table 1, entry 7).

Figure S12. ¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of a PCHDC prepared from ROCOP of CHDO and CO₂ using a *rac*-(Salen)CoBr catalyst.

Figure S13. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 23 °C) of a PCHDC prepared from ROCOP of CHDO and CO₂ using a *rac*-(Salen)CoBr catalyst.

Figure S14. SEC trace (CHCl₃, 30 °C) of a PCHDC prepared by ROP of *rac*-CHDC with the [(NNO)ZnEt]/BnOH system (Table 1, entry 1).

Figure S15. SEC trace (CHCl₃, 30 °C) of a PCHDC prepared by ROP of *rac*-CHDC with the TBD/BnOH system (Table 1, entry 4).

Figure S16. SEC trace (THF, 30 °C) of a P(CHC-*co*-CHDC) prepared by ROP of *rac*-CHDC and *rac*-CHC with the [(NNO)ZnEt]/BnOH system (Table 2, entry 2).

Figure S17. DSC thermogram (second heating cycle; heating rate = 10 °C.min^{-1} ; argon flow) of a P(CHC-*co*-CHDC) prepared by ROP of *rac*-CHDC and *rac*-CHC with the [(NNO)ZnEt]/BnOH system (Table 2, entry 2).

Figure S18. ¹H NMR spectrum (400 MHz, CD₂Cl₂, 23 °C) of a P(CHC-*b*-CHDC) copolymer prepared by sequential copolymerization of *rac*-CHC followed by that of *rac*-CHDC (Table 3).

Figure S19. ¹³C{¹H} NMR spectrum (100 MHz, CD₂Cl₂, 23 °C) of a P(CHC-*b*-CHDC) copolymer prepared by sequential copolymerization of *rac*-CHC followed by that of *rac*-CHDC (Table 3).

Figure S20. DSC thermogram (first heating cycle; heating rate = $10 \,^{\circ}$ C.min⁻¹; argon flow) of a P(CHC-*b*-CHDC) prepared by sequential copolymerization of *rac*-CHC followed by that of *rac*-CHDC (Table 3).

Figure S21. ¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of a P(CHDC-*co*-LLA) copolymer prepared from *rac*-CHDC and L-LA (Table 4, entry 2).

Figure S22. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃, 23 °C) of a P(CHDC-*co*-LLA) copolymer prepared from *rac*-CHDC and L-LA (Table 4, entry 2).

Figure S23. DSC thermogram (second heating cycle; heating rate = 10 °C.min^{-1} ; argon flow) of a P(CHDC-*co*-LLA) copolymer prepared from *rac*-CHDC and L-LA (Table 4, entry 2).

Figure S24. DSC thermogram (second heating cycle; heating rate = 10 °C.min^{-1} ; argon flow) of a P(CHDC-*co*-LLA) copolymer prepared from *rac*-CHDC and L-LA (Table 4, entry 3).

Figure S1. Chiral GC trace of racemic (top) and enantio-enriched (83% ee) (bottom) *trans*-(R,R)-1,2-cyclohex-4-ene-diol.

Figure S2. ¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of *trans-rac-*CHDC (* stands for residual CHCl₃).

Figure S3. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 23 °C) of *trans-rac-*CHDC (* stands for residual CHCl₃).

Figure S4. ¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of enantio-enriched (83% ee) *trans-(R,R)*-CHDC (* stands for residual CHCl₃).

Figure S5. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 23 °C) of enantio-enriched (83% ee) *trans-(R,R)*-CHDC (* stands for residual CHCl₃).

Figure S6. ¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of a PCHDC prepared by ROP of *rac*-CHDC with the [(NNO)ZnEt]/BnOH system (Table 1, entry 3) (* stands for residual CHCl₃).

Figure S7. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 23 °C) of a PCHDC prepared by ROP of *rac*-CHDC with the [(NNO)ZnEt]/BnOH system (Table 1, entry 3) (* stands for residual CHCl₃).

Figure S8. ¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of a PCHDC prepared by ROP of *rac*-CHDC with the TBD/BnOH system (Table 1, entry 4) (* stands for residual CHCl₃).

Figure S9. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 23 °C) of a PCHDC prepared by ROP of *rac*-CHDC with the TBD/BnOH system (Table 1, entry 4) (* stands for residual CHCl₃).

Figure S10. ¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of a PCHDC prepared by ROP of (*R*,*R*)-CHDC with the [(NNO)ZnEt]/BnOH system (Table 1, entry 7) (*, +, \bowtie and # stand for residual CHCl₃, MeOH, CH₂Cl₂ and CHDC, respectively).

Figure S11. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 23 °C) of a PCHDC prepared by ROP of (R,R)-CHDC with the [(NNO)ZnEt]/BnOH system (Table 1, entry 7) (*and # stand for residual CHCl₃ and CHDC, respectively).

Figure S12. ¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of a PCHDC prepared from ROCOP of CHDO and CO₂ using a *rac*-(Salen)CoBr catalyst (* stands for residual CHCl₃).

Figure S13. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 23 °C) of a PCHDC prepared from ROCOP of CHDO and CO₂ using a *rac*-(Salen)CoBr catalyst (* stands for residual CHCl₃).

Figure S14. SEC trace (CHCl₃, 30 °C) of a PCHDC prepared by ROP of *rac*-CHDC with the [(NNO)ZnEt]/BnOH system (Table 1, entry 1).

Figure S15. SEC trace (CHCl₃, 30 °C) of a PCHDC prepared by ROP of *rac*-CHDC with the TBD/BnOH system (Table 1, entry 4).

Figure S16. SEC trace (THF, 30 °C) of a P(CHC-*co*-CHDC) prepared by ROP of *rac*-CHDC and *rac*-CHC with the [(NNO)ZnEt]/BnOH system (Table 2, entry 2).

Figure S17. DSC thermogram (second heating cycle; heating rate = 10 °C.min^{-1} ; argon flow) of a P(CHC-*co*-CHDC) prepared by ROP of *rac*-CHDC and *rac*-CHC with the [(NNO)ZnEt]/BnOH system (Table 2, entry 2).

Figure S18. ¹H NMR spectrum (400 MHz, CD_2Cl_2 , 23 °C) of a P(CHC-*b*-CHDC) copolymer prepared by sequential copolymerization of *rac*-CHC followed by that of *rac*-CHDC (Table 3) (* stands for residual CH₂Cl₂ resonances).

Figure S19. ¹³C{¹H} NMR spectrum (100 MHz, CD₂Cl₂, 23 °C) of a P(CHC-*b*-CHDC) copolymer prepared by sequential copolymerization of *rac*-CHC followed by that of *rac*-CHDC (Table 3) (* stands for residual CD₂Cl₂ resonances).

Figure S20. DSC thermogram (first heating cycle; heating rate = $10 \,^{\circ}$ C.min⁻¹; argon flow) of a P(CHC-*b*-CHDC) prepared by sequential copolymerization of *rac*-CHC followed by that of *rac*-CHDC (Table 3).

Figure S21. ¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of a P(CHDC-*co*-LLA) copolymer prepared from *rac*-CHDC and L-LA (Table 4, entry 2) (* stands for residual CHCl₃ resonances).

Figure S22. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃, 23 °C) of a P(CHDC-*co*-LLA) copolymer prepared from *rac*-CHDC and L-LA (Table 4, entry 2) (# and * stand for residual CH₂Cl₂ and CHCl₃ resonances, respectively).

Figure S23. DSC thermogram (second heating cycle; heating rate = 10 °C.min^{-1} ; argon flow) of a P(CHDC-*co*-LLA) copolymer prepared from *rac*-CHDC and L-LA (Table 4, entry 2).

Figure S24. DSC thermogram (second heating cycle; heating rate = 10 °C.min^{-1} ; argon flow) of a P(CHDC-*co*-LLA) copolymer prepared from *rac*-CHDC and L-LA (Table 4, entry 3).