Supporting Information

Dual-stimuli sensitive keratin graft PHPMA as physiological trigger responsive drug carriers

Qinmei Li,^{ab} Saina Yang,^a Lijun Zhu,^a Hongliang Kang,^a Ruigang Liu,^{*a} Xiaozhong Qu^c and Yong

Huang^{*ad}

^aSate Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory of

Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190,

China. E-mail: rgliu@iccas.acn, Fax & Tel: +86-10-82618573

^bBeijing Key Laboratory of Organic Materials Testing Technology & Quality Evaluation,

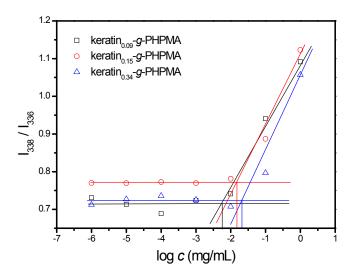
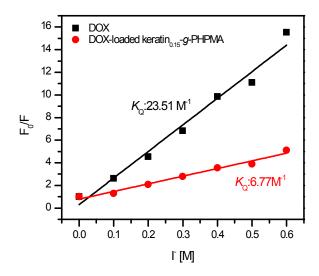
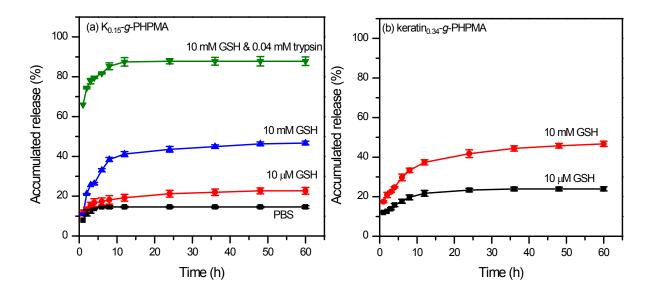
Beijing Centre for Physical & Chemical Analysis, Beijing 100089, China

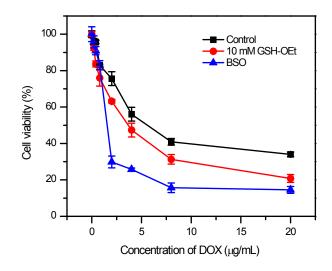
^cUniversity of Chinese Academy of Sciences, Beijing 100049, China

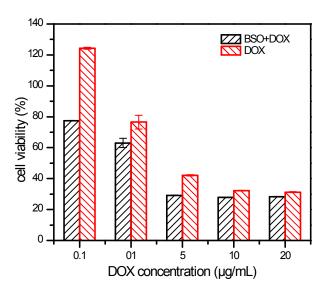
^dNatural Research Center for Engineering Plastics, Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Beijing 100190, China

Determination of the critical micelle concentration (CMC) of copolymers

The critical micelle concentration (CMC) of K-g-PHPMA graft copolymers was estimated by fluorescence probe. Pyrene was used as the probe and the concentration of pyrene was kept at 5.0×10^{-7} mol L⁻¹ in all the solutions with different K-g-PHPMA concentrations (1.0 $\times 10^{-6} - 1.0$ mg mL⁻¹). Emission fluorescence spectra of the solutions excited at 393 nm were recorded on a Perkin Elmer LS 55 fluorescence spectrometer equipped with a 20 kW Xenon discharge lamp. The intensity ratio of the peak at 338 nm to 336 nm (I₃₃₈ /I₃₃₆) in the excitation spectra reflects the polarity of the microenvironment around pyrene. The intensity ratio was plotted as a function of copolymer concentrations and the turn point was used as the CMC of the K-g-PHPMA graft copolymers.


Fig. S1. CMC of K-g-PHPMA graft copolymers determined by pyrene.


Fig. S2 Stern-Volmer plots of free DOX and DOX-loaded micelles prepared from $K_{0.15}$ -g-PHPMA.

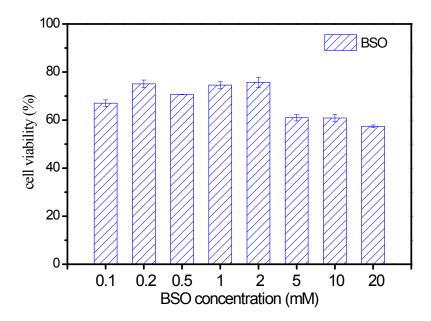

Fig. S3 The release profile of DOX from the micelles in pH 7.4 PBS buffer solutions as a function of time. $K_{0.15}$ -g-PHPMA (a) and $K_{0.34}$ -g-PHPMA micelles in denoted external conditions. Datas are presented as the average \pm standard deviation (n = 3).

Fig. S4 Relative cell viability of MCF-7 cells against DOX-loaded $K_{0.15}$ -g-PHPMA micellar solution after cultured for 48 h. The cell viability was determined by MTT assay. The concentration of DOX was calculated by the DOX loaded in the micelles. MCF-7 cells incubated in micellar solutions were used as the control. Each point is the mean of four independent measurements.

Fig. S5 Relative cell viability of MCF-7 cells against DOX and BSO (1.0 mM) + DOX after cultured for 48 h. The cell viability was determined by MTT assay. Each point is the mean of four independent measurements.

Fig. S6 Relative cell viability of MCF-7 cells against BSO after cultured for 48 h with different concentrations. The cell viability was determined by MTT assay. Each point is the mean of four independent measurements.