Electronic Supplementary Information

of

Synthesis of well-defined α, ω -telechelic multiblock copolymers in water: *In situ* generation of α, ω -diols

Alexandre Simula^{*a*}, Vasiliki Nikolaou^{*a*}, Athina Anastasaki^{*a*}, Fehaid Alsubaie^{*a*}, Gabit Nurumbetov^{*a*}, Paul Wilson^{*a,b*}, Kristian Kempe^{*a,b*} and David M. Haddleton^{*a,b**}.

a - University of Warwick, Chemistry Department, Library road, CV4 7AL, Coventry United

Kingdom.

b- Monash Institute of Pharmaceutical Sciences, Monash University, Parksville, VIC 3052, Australia.

* Email: D.M.Haddleton@warwick.ac.uk

Materials

Poly(ethylene glycol) (PEG, av. M_w =1000 g.mol⁻¹, BioUltra, Sigma-Aldrich), *N*,*N*-dimethylacrylamide (DMA, 99%, Sigma-Aldrich), *N*,*N*-diethylacrylamide (DEA, 99%, Sigma-Aldrich), poly(ethylene glycol) methyl ether acrylate (PEGA₄₈₀, 97%, Sigma-Aldrich, av. M_w = 480 g.mol⁻¹), *n*-butyl isocyanate (>98%, Sigma-Aldrich), 2-isopropanol (IPA, HPLC grade, VWR), water (HPLC grade, VWR) were used as received without further purification. CuprisorbTM resin was purchased from Seachem. Cu(I)Br (CuBr, 97%, Sigma-Aldrich) was washed sequentially with acetic

acid glacial and ethanol and dried over reduced pressure. *N*-isopropylacrylamide (NIPAAm, 97%, Sigma-Aldrich) was recrystallized three times from *n*-hexane and dried over reduced pressure prior to use. N, N, N', N', N'', N''-Hexamethyl-[tris(aminoethyl)amine] (Me₆-TREN) was synthesized according to a reported procedure¹, deoxygenated and stored at 4°C under nitrogen prior to use. 3-dihydroxypropyl 2-bromo-2-methylpropanoate was synthesized according to a reported procedure².

Instrument and analysis

¹H, ¹³C NMR spectra were recorded on Bruker ACF-250 and DPX-400 spectrometers using deuterated solvents obtained from Sigma-Aldrich.

IR spectra were collected on a Bruker VECTOR-22 FT-IR spectrometer using a Golden Gate diamond attenuated reflection cell.

HRMS (ESI) data were collected in positive mode, using a Bruker HCT Ultra ESI spectrometer.

MALDI-ToF MS spectra were recorded in reflection mode on a Bruker Daltonics Ultraflex II MALDI-ToF mass spectrometer, equipped with a nitrogen LASER delivering 2ns laser pulses at 337 nm with positive ion ToF detection performed using an accelerating voltage of 25 kV. The matrix solution was prepared by dissolving trans-2-[3-(4-tertbutylphenyl)-2-methyl-2-propenylidene] malononitrile (DCTB) in THF (200 mg/mL). Sodium iodide was dissolved in THF (2 mg/ mL). Polymer samples were dissolved in THF (1 to 5 mg/mL). Samples were prepared by mixing 5 μ L of polymer solution, 5 μ L of salt solution and 20 μ L of matrix solution. Calibration was performed with a poly(ethylene glycol) methyl ether acrylate M_w 1100 g.mol⁻¹ standard. SEC using a CHCl₃ eluent was carried out at 30°C on a Varian 390-LC system with a CHCl₃ + 2% TEA eluent, equipped with 2 × PLgel 5 mm mixedD columns (300 × 7.5 mm), 1 × PLgel 5 mm guard column (50 × 7.5 mm), autosampler and a refractive index detector. DMF SEC traces were obtained on a Varian 390-LC system using a DMF (5 mM NH₄BH₄) eluent at 50°C, equipped with refractive index, UV and viscometry detectors, 2 × PLgel 5 mm mixed D columns (300 × 7.5 mm), 1 × PLgel 5 mm guard column (50 × 7.5 mm) and autosampler. Narrow linear poly(methyl methacrylate) standards in range of 200 to 1.0 × 106 g·mol⁻¹ were used to calibrate the system. All samples were passed through 0.45 μm PTFE filter before analysis. Cloud point temperatures were recorded on an Agilent Technologies Cary 60 UV-Vis using a cuvette with 1cm path length.

Dynamic light scattering (DLS) experiment were carried out at 25°C on a MALVERN Zetasizer instrument (backscattering angle 173°C) using a plastic cuvette with 1 cm path length.

Synthesis of initiators

Synthesis of ethylene bis(2-bromoisobutyrate)

The synthesis was adapted from a reported procedure. To a 2 L 3 neck RB flask equipped with a magnetic stirring bar and a dropping funnel was added, under nitrogen, ethylene glycol (8 mL, 0.14 mol). Anhydrous dichloromethane (700 mL) was canulated into the flask. Triethylamine (60 mL, 3 eq.) was added to the reaction mixture *via* a deoxygenated syringe and allowed to cool to 0 °C. 2-Bromoisobutyryl bromide (37.6 mL, 2.5 eq.) was added under nitrogen, dropwise (over one hour) to the reaction mixture *via* the dropping funnel. After a complete addition, the reaction mixture was allowed to stir at 0 °C for one hour and at ambient temperature overnight. The mixture was filtered and the volatiles were removed by rotary evaporation. The resulting brown solution was dissolved in chloroform (300 mL) and treated with 1M HCl solution (250 mL), saturated NaHCO₃ solution (250 mL) and three times with deionised water (3 x 250 mL). The organic layer were dried over dry MgSO₄ and passed twice through a basic activated alumina oxide column. The volatiles were removed *in vacuo* to give a light brown solid (40.66 g, 78 % yield).

¹H NMR (CDCl₃, 400 MHz), δ (ppm): 4.37 (s, 4H, RO-(C*H*₂)₂-OR) and 1.87 (s, 12H, -(C*H*₃)₂).¹³C NMR (CDCl₃, 100 MHz), δ (ppm): 63.2 and 30.7. FT-IR (v, cm⁻¹): 3000 (C-H stretch) 1750 (O-CO-R), 1380 (-(CH₃)₂), 1300 (CH stretch), 1200 (CH stretch). HRMS (ESI, m/z, Da): [M + Na⁺] 382.9 (*382.94 Th*).

Figure S1. ¹H NMR (400 MHz, CDCl₃) spectrum of ethylene bis(2-bromoisobutyrate).

Figure S2. ¹³C NMR (100MHz, CDCl₃) spectrum of ethylene bis(2-bromoisobutyrate).

Figure S3. FT-IR spectrum of ethylene bis(2-bromoisobutyrate).

Synthesis of poly(ethylene glycol) bis (2-bromoisobutyrate).

Poly(ethylene glycol) (av. M_w 1000 g.mol⁻¹, 15 g, 15 mmol) was charged in a 500 mL three neck RB flask equipped with a dropping funnel, magnetic stirring bar and rubber septa and left to degas under nitrogen for 30 mins. Anhydrous toluene (300 mL) was canulated into the flask and the mixture left to stir for 5 mins. Subsequently, 50 mL of solvent was distilled under reduced pressure. Triethylamine (5.2 mL, 2.5 eq.) was added to the solution via a deoxygenated syringe and the mixture placed in an ice bath. α -bromoisobutyryl bromide (3.9 mL, 2.5 eq.) was added dropwise via the dropping funnel. Upon complete addition, the mixture was left to stir at 0°C for 30 minutes and at ambient temperature overnight.

The mixture was filtered to remove the amine salt and the volatiles removed by rotary evaporation. The solid was dissolved in dichloromethane (150 mL) and washed three times with a saturated solution of Na_2CO_3 (2* 75 mL). The organic phase was dried over MgSO₄ before the volatiles were removed by rotary evaporation to yield a light yellow liquid. The solid was dissolved in THF and precipitated twice in cold petroleum ether (60-80°C) to yield a light yellow solid (15.4 g, 84 % yield).

¹H NMR (CDCl₃, 300 MHz), δ (ppm): 4.33 (t, 4H, J₁=9.6 Hz, J₂=4.9Hz, CO-O-C*H*₂-CH₂), 3.75 (t, 4H, J₁=9.6 Hz, J₂=4.9Hz, CO-O-CH₂-C*H*₂), 3.65 (s, 74H, -O-C*H*₂-C*H*₂) and 1.95 (s, 12H, -(C*H*₃)₂). ¹³C NMR (CDCl₃, 75 MHz), δ (ppm): 70.5, 68.7, 65.1 and 30.7. FT-IR (v, cm⁻¹): 3000 (C-H stretch) 1750 (O-CO-R), 1380 (-(CH₃)₂), 1300 (CH stretch), 1200 (CH stretch). HRMS (ESI, m/z, Da): [2M + Na⁺] 621.9 (*DP_n* 18, *621.2 Th*).

Figure S4. ¹H NMR (300 MHz, CDCl₃) spectrum of poly(ethylene glycol) bis(2-bromoisobutyrate).

Figure S5. ¹³C NMR (75 MHz, CDCl₃) spectrum of poly(ethylene glycol) bis(2-bromoisobutyrate).

Figure S6. FT-IR spectrum of poly(ethylene glycol) bis(2-bromoisobutyrate).

Figure S7. MALDI-ToF spectrum of poly(ethylene glycol) bis(2-bromoisobutyrate).

Disproportionation of Cu(I)Br in the presence of Me₆-TREN in IPA:H₂O and polymerizations

Monitoring the disproportionation of Cu(I)Br in the presence of Me₆-TREN in water

The theoretical disproportionation curve was obtained by preparing a solution of Cu(II)Br₂ (91.48 mg, 0.41 mmol) in the presence of Me₆-TREN (109.5 μ L, 0.5 eq.) in H₂O, in a volumetric flask (25 mL ± 0.04 mL). The main solution was diluted 10 times using volumetric flasks (5 mL ± 0.025 mL). Disproportionation was performed by adding Cu(I)Br (9.4 mg, 6.5 10⁻⁵ mol) to a solution of solvent (2 mL) and Me₆-TREN (9 μ L, 0.5 eq.), which was left to stir and deoxygenate with nitrogen for 15 minutes. Subsequently, the solution was filtered under nitrogen to remove any Cu(0) particles, and the filtrate diluted 10 times using a volumetric flask (5 mL ± 0.025 mL). UV-Vis spectrum was recorded using a quartz cuvette (path length 1 cm).

Figure S8. Monitoring the disproportionation of Cu(I)Br in the presence of Me₆-TREN in water.

Monitoring the disproportionation of Cu(I)Br in the presence of Me₆-TREN in 50% v/v IPA:H₂O.

The theoretical disproportionation curve was obtained by preparing a solution of Cu(II)Br₂ (91.48 mg, 0.41 mmol) in the presence of Me₆-TREN (109.5 μ L, 0.5 eq.) in IPA:H₂O 50 % v/v, in a volumetric flask (25 mL ± 0.04 mL). The main solution was diluted in five concentrations (diluted 50 to 10 times) using volumetric flasks (5 mL ± 0.025 mL). Disproportionation was performed by adding Cu(I)Br (9.4 mg, 6.5 10⁻⁵ mol) to a solution of solvent (2 mL) and Me₆-TREN (9 μ L, 0.5 eq.), which was left to stir and deoxygenate with nitrogen for 15 minutes. Subsequently, the solution was filtered under nitrogen to remove any Cu(0) particles, and the filtrate diluted 10 times using a volumetric flask (5 mL ± 0.025 mL). UV-Vis spectrum was recorded using a quartz cuvette (path length 1 cm).

Figure S9. Monitoring the disproportionation of Cu(I)Br in the presence of Me₆-TREN in 50% v/v IPA-H₂O.

Disproportionation of Cu(I)Br in the presence of Me₆-TREN to catalyse the polymerization of PEGA₄₈₀ DP_n =8 in IPA:H₂O 1:1..

This procedure is adapted from Zhang *et. al.* procedure³ to yield telechelic polymers in a solvent/water system. To an oven dried Schlenk tube fitted with a magnetic stirring bar and rubber septum was added H₂O (1.5 mL), Me₆-TREN (29.5 μ L, 0.4 eq.) and Cu(I)Br (31.8 mg, 0.8 eq.). The solution was left to degas for 20 minutes and to stir for an extra 10 minutes. In a vial fitted with a rubber septum and magnetic stirring bar was charged with ethylene bis(2-bromoisobutyrate) (100 mg, 0.28 mmol), PEGA₄₈₀ (978 μ L, 8 eq.) and IPA:H₂O 4:1 (2 mL). The mixture was left to stir until complete dissolution of the monomer (typically 2 minutes) and deoxygenated with nitrogen for 10 minutes. The solution was cannulated into the Schlenk tube and the reaction was left to polymerize at 0°C.

Figure S10. Monitoring of the polymerization of poly(ethylene glycol) methyl ether acrylate (av. M_w =480 g.mol⁻¹) in 50 % v/v IPA:H₂O at 0°C after 2 hours by ¹H NMR (MeOD, 300 MHz).

Disproportionation of Cu(I)Br in the presence of Me_6 -TREN to catalyse the polymerization of NIPAAm $DP_n=20$ in IPA:H₂O 1:1..

This procedure is adapted from Zhang et al. procedure³ to yield telechelic polymers in a solvent/water system. To an oven dried Schlenk tube fitted with a magnetic stirring bar and rubber septum was added H₂O (1.5 mL), Me₆-TREN (29.5 μ L, 0.4 eq.) and Cu(I)Br (31.8 mg, 0.8 eq.). The solution was left to degas for 20 minutes and to stir for an extra 10 minutes. In a vial fitted with a rubber septum and magnetic stirring bar was charged with ethylene bis(2-bromoisobutyrate) (100 mg, 0.28 mmol), NIPAAm (630 mg, 20 eq.) and IPA:H₂O 4:1 (2 mL). The mixture was left to stir until complete dissolution of the monomer (typically 2 minutes) and deoxygenated with nitrogen for 10 minutes. The solution was cannulated into the Schlenk tube and the reaction was left to polymerize at 0°C.

Figure S11. Monitoring the polymerization of *N*-isopropylacrylamide in 50% v/v IPA:H₂O at 0°C after 2 hours by ¹H NMR (MeOD, 400 MHz).

Figure S12. SEC trace (DMF eluent) of poly(*N*-isopropylacrylamide) (92 % conv. by ¹H NMR), [I]:[M]:[Me₆-TREN]:[CuBr] 1:20:0.4:0.8 initiated by ethylene bis(2-bromoisobutyrate).

Figure S13. (Left) Disproportionation of Cu(I)Br in the presence of Me₆-TREN in water. (Middle) Polymerization of *N*-isopropylacrylamide in IPA:H₂O 1:1 ν/ν . (Right) Lyophilized polymer after copper removal with CuprisorbTM resin.

Disproportionation of Cu(I)Br in the presence of Me₆-TREN in H₂O and polymerizations

Disproportionation of Cu(I)Br in the presence of Me₆-TREN to catalyse the polymerization of NIPAAm DP_n =30 in H₂O.

To an oven dried Schlenk tube fitted with a magnetic stirring bar and rubber septum was added H₂O (1.5 mL), Me₆-TREN (12.5 μ L, 0.4 eq.) and Cu(I)Br (5.9 mg, 0.4 eq.). The solution was left to degas for 20 minutes and to stir for an extra 10 minutes. In a vial fitted with a rubber septum and magnetic stirring bar was charged with 3-dihydroxypropyl 2-bromo-2-methylpropanoate (25 mg, 0.1 mmol), NIPAAm (352 mg, 30 eq.) and H₂O (1.5 mL). The mixture was left to stir until complete dissolution of the monomer (typically 2 minutes) and deoxygenated with nitrogen for 10 minutes. The solution was cannulated into the Schlenk tube and the reaction was left to polymerize at 0°C.

Figure S14. Monitoring the polymerization of *N*-isopropylacrylamide in water after 30 minutes by ¹H NMR (D₂O, 250 MHz).

Figure S15. SEC traces (DMF eluent) of poly(*N*-isopropylacrylamide) (97% conversion by ¹H NMR) initiated by 3-dihydroxypropyl 2-bromo-2-methylpropanoate.

Disproportionation of Cu(I)Br in the presence of Me₆-TREN to catalyse the polymerization of NIPAAm $DP_n=20$ in H₂O using a lack of ligand.

To an oven dried Schlenk tube fitted with a magnetic stirring bar and rubber septum was added H₂O (1.5 mL), Me₆-TREN (9 μ L, 0.4 eq.) and Cu(I)Br (9.4 mg, 0.8 eq.). The solution was left to degas for 20 minutes and to stir for an extra 10 minutes. In a vial fitted with a rubber septum and magnetic stirring bar was charged with poly(ethylene glycol) bis(2-bromoisobutyrate) (100 mg, 8.1 10⁻⁵ mol), NIPAAm (185 mg, 20 eq.) and H₂O (1.5 mL). The mixture was left to stir until complete dissolution of the monomer (typically 2 minutes) and deoxygenated with nitrogen for 10 minutes. The solution was cannulated into the Schlenk tube and the reaction was left to polymerize at 0°C.

Figure S16. NMR spectrum (D₂O, 250 MHz) of $poly(N-isopropylacrylamide)_{10}-b-poly(ethylene glycol)-b-poly(N-isopropylacrylamide)_{10}$ (80 % conv. by ¹H NMR) using a lack of Me₆-TREN ligand [I]:[CuBr]:[Me₆-TREN]:[M] 1:0.8:0.4:20.

Disproportionation of Cu(I)Br in the presence of Me₆-TREN to catalyse the polymerization of NIPAAm $DP_n=20$ in H₂O.

To an oven dried Schlenk tube fitted with a magnetic stirring bar and rubber septum was added H_2O (1.5 mL), Me₆-TREN (13 μ L, 0.6 eq.) and Cu(I)Br (9.4 mg, 0.8 eq.). The solution was left to degas for 20 minutes and to stir for an extra 10 minutes. In a vial fitted with a rubber septum and

magnetic stirring bar was charged with poly(ethylene glycol) bis(2-bromoisobutyrate) (100 mg, 8.1 10^{-5} mol), NIPAAm (185 mg, 20 eq.) and H₂O (1.5 mL). The mixture was left to stir until complete dissolution of the monomer (typically 2 minutes) and deoxygenated with nitrogen for 10 minutes. The solution was cannulated into the Schlenk tube and the reaction was left to polymerize at 0°C.

Figure S17. Disproportionation of Cu(I)Br in the presence of Me₆-TREN to catalyse the polymerization of *N*-isopropylacrylamide with poly(ethylene glycol) bis(2-bromoisobutyrate) in H₂0 at 0°C. (A) Evolution of Ln([M]₀/[M]) in function of time. (B) Evolution of molecular weight (M_n obtained by DMF SEC) and dispersity ($D=M_w/M_n$) in function of monomer conversion (by ¹H NMR).

Figure S18. Monitoring the polymerization of *N*-isopropylacrylamide in H₂O at 0°C by ¹H NMR (250 MHz, D₂O).

Disproportionation of Cu(I)Br in the presence of Me₆-TREN to catalyse the polymerization of NIPAAm $DP_n=20$ in H₂O using an excess of ligand.

To an oven dried Schlenk tube fitted with a magnetic stirring bar and rubber septum was added H₂O (1.5 mL), Me₆-TREN (17.5 μ L, 0.8 eq.) and Cu(I)Br (9.4 mg, 0.8 eq.). The solution was left to degas for 20 minutes and to stir for an extra 10 minutes. In a vial fitted with a rubber septum and magnetic stirring bar was charged with poly(ethylene glycol) bis(2-bromoisobutyrate) (100 mg, 8.1 10⁻⁵ mol), NIPAAm (185 mg, 20 eq.) and H₂O (1.5 mL). The mixture was left to stir until complete dissolution of the monomer (typically 2 minutes) and deoxygenated with nitrogen for 10 minutes. The solution was cannulated into the Schlenk tube and the reaction was left to polymerize at 0°C.

Figure S19. SEC traces (DMF eluent) of poly(*N*-isopropylacrylamide)₁₀-*b*-poly(ethylene glycol)-*b*-poly(*N*-isopropylacrylamide)₁₀ (> 99 % conv. by ¹H NMR, M_n 6900 g.mol⁻¹, D=1.16) using an excess of Me₆-TREN ligand [I]:[CuBr]:[Me₆-TREN]:[M] 1:0.8:0.8:20.

Figure S20. NMR spectrum (D₂O, 250 MHz) of poly(*N*-isopropylacrylamide)₁₀-*b*-poly(ethylene glycol)-*b*-poly(*N*-isopropylacrylamide)₁₀ (> 99 % conv. by ¹H NMR, M_n 6900 g.mol⁻¹, D=1.16) using an excess of Me₆-TREN ligand [I]:[CuBr]:[Me₆-TREN]:[M] 1:0.8:0.8:20.

Disproportionation of Cu(I)Br in the presence of Me₆-TREN to catalyse the polymerization of NIPAAm DP_n =40 in H₂O.

To an oven dried Schlenk tube fitted with a magnetic stirring bar and rubber septum was added H₂O (2 mL), Me₆-TREN (13 μ L, 0.6 eq.) and Cu(I)Br (9.4 mg, 0.8 eq.). The solution was left to degas for 20 minutes and to stir for an extra 10 minutes. In a vial fitted with a rubber septum and magnetic stirring bar was charged with poly(ethylene glycol) bis(2-bromoisobutyrate) (100 mg, 8.1 10⁻⁵ mol), NIPAAm (365 mg, 40 eq.) and H₂O (4 mL). The mixture was left to stir until complete dissolution of the monomer (typically 2 minutes) and deoxygenated with nitrogen for 10 minutes. The solution was cannulated into the Schlenk tube and the reaction was left to polymerize at 0°C.

Disproportionation of Cu(I)Br in the presence of Me₆-TREN to catalyse the polymerization of NIPAAm DP_n =80 in H₂O.

To an oven dried Schlenk tube fitted with a magnetic stirring bar and rubber septum was added H₂O (2 mL), Me₆-TREN (13 μ L, 0.6 eq.) and Cu(I)Br (9.4 mg, 0.8 eq.). The solution was left to degas for 20 minutes and to stir for an extra 10 minutes. In a vial fitted with a rubber septum and magnetic stirring bar was charged with poly(ethylene glycol) bis(2-bromoisobutyrate) (100 mg, 8.1 10⁻⁵ mol), NIPAAm (739 mg, 80 eq.) and H₂O (6 mL). The mixture was left to stir until complete dissolution of the monomer (typically 2 minutes) and deoxygenated with nitrogen for 10 minutes. The solution was cannulated into the Schlenk tube and the reaction was left to polymerize at 0°C.

Chain extension was performed by cannulation of a deoxygenated solution of NIPAAm (739 mg, 80 eq.) and H_20 (6 mL) after 30 minutes of polymerization.

Disproportionation of Cu(I)Br in the presence of Me₆-TREN to catalyse the polymerization of NIPAAm DP_n =160 in H₂O.

To an oven dried Schlenk tube fitted with a magnetic stirring bar and rubber septum was added H₂O (2 mL), Me₆-TREN (19.5 μ L, 0.8 eq.) and Cu(I)Br (14 mg, 1.2 eq.). The solution was left to degas for 20 minutes and to stir for an extra 10 minutes. In a vial fitted with a rubber septum and magnetic stirring bar was charged with poly(ethylene glycol) bis(2-bromoisobutyrate) (100 mg, 8.1 10⁻⁵ mol), NIPAAm (1.48 g, 160 eq.) and H₂O (10 mL). The mixture was left to stir until complete dissolution of the monomer (typically 2 minutes) and deoxygenated with nitrogen for 10 minutes. The solution was cannulated into the Schlenk tube and the reaction was left to polymerize at 0°C.

Disproportionation of Cu(I)Br in the presence of Me₆-TREN to catalyse the polymerization of NIPAAm DP_n =320 in H₂O

To an oven dried Schlenk tube fitted with a magnetic stirring bar and rubber septum was added H_2O (2 mL), Me₆-TREN (19.5 μ L, 0.8 eq.) and Cu(I)Br (14 mg, 1.2 eq.). The solution was left to degas for 20 minutes and to stir for an extra 10 minutes. In a vial fitted with a rubber septum and

magnetic stirring bar was charged with poly(ethylene glycol) bis(2-bromoisobutyrate) (100 mg, 8.1 10^{-5} mol), NIPAAm (2.95 g, 320 eq.) and H₂O (12 mL). The mixture was left to stir until complete dissolution of the monomer (typically 2 minutes) and deoxygenated with nitrogen for 10 minutes. The solution was cannulated into the Schlenk tube and the reaction was left to polymerize at 0°C.

Figure S21. SEC traces (DMF eluent) of chain extension of poly(*N*-isopropylacrylamide) (> 99 % conv. by ¹H NMR, M_n 13800 g.mol⁻¹, D=1.17) initiated by poly(ethylene glycol) bis(2-bromoisobutyrate) with *N*-isopropylacrylamide (739 mg, 80 eq.).

Figure S22. Monitoring of the chain extension of poly(*N*-isopropylacrylamide) in H₂O at 0°C by ¹H NMR (D₂O, 250 MHz).

Disproportionation of Cu(I)Br in the presence of Me₆-TREN to catalyse the polymerization of NIPAAm $DP_n=10$ and DMA $DP_n=11$ in H₂O.

To an oven dried Schlenk tube fitted with a magnetic stirring bar and rubber septum was added H₂O (1.5 mL), Me₆-TREN (13 μ L, 0.6 eq.) and Cu(I)Br (9.4 mg, 0.8 eq.). The solution was left to degas for 20 minutes and to stir for an extra 10 minutes. In a vial fitted with a rubber septum and magnetic stirring bar was charged with poly(ethylene glycol) bis(2-bromoisobutyrate) (100 mg, 8.1 10⁻⁵ mol), NIPAAm (92 mg, 10 eq.) and H₂O (1.5 mL). The mixture was left to stir until complete dissolution of the monomer (typically 2 minutes) and deoxygenated with nitrogen for 10 minutes. The solution was cannulated into the Schlenk tube and the reaction was left to polymerize at 0°C.

Chain extension was performed by cannulation of a deoxygenated solution of DMA (92 μ L, 11 eq.) and H₂0 (1.5 mL) after 30 minutes of polymerization.

Figure S23. Monitoring of the chain extension of poly(N-isopropylacrylamide) in H₂O at 0°C with dimethylacrylamide by ¹H NMR (D₂O, 250 MHz).

Figure S24. SEC traces (DMF eluent) of chain extension of poly(*N*-isopropylacrylamide) (> 99 % conv. by ¹H NMR, M_n 10700 g.mol⁻¹, D=1.12) initiated by poly(ethylene glycol) bis(2-bromoisobutyrate) with dimethylacrylamide (84 µL, 11 eq.).

Disproportionation of Cu(I)Br in the presence of Me₆-TREN to catalyse the polymerization of NIPAAm $DP_n=10$ and DEA $DP_n=9$ in H₂O.

To an oven dried Schlenk tube fitted with a magnetic stirring bar and rubber septum was added H₂O (1.5 mL), Me₆-TREN (13 μ L, 0.6 eq.) and Cu(I)Br (9.4 mg, 0.8 eq.). The solution was left to degas for 20 minutes and to stir for an extra 10 minutes. In a vial fitted with a rubber septum and magnetic stirring bar was charged with poly(ethylene glycol) bis(2-bromoisobutyrate) (100 mg, 8.1 10⁻⁵ mol), NIPAAm (92 mg, 10 eq.) and H₂O (1.5 mL). The mixture was left to stir until complete dissolution of the monomer (typically 2 minutes) and deoxygenated with nitrogen for 10 minutes. The solution was cannulated into the Schlenk tube and the reaction was left to polymerize at 0°C.

Chain extension was performed by cannulation of a deoxygenated solution of DEA (101 μ L, 9 eq.) and H₂0 (1.5 mL) after 30 minutes of polymerization.

Disproportionation of Cu(I)Br in the presence of Me₆-TREN to catalyse the polymerization of PEGA₄₈₀ DP_n =20 in H₂O.

To an oven dried Schlenk tube fitted with a magnetic stirring bar and rubber septum was added H₂O (2 mL), Me₆-TREN (13 μ L, 0.6 eq.) and Cu(I)Br (9.4 mg, 0.8 eq.). The solution was left to degas for 20 minutes and to stir for an extra 10 minutes. In a vial fitted with a rubber septum and magnetic stirring bar was charged with poly(ethylene glycol) bis(2-bromoisobutyrate) (100 mg, 8.1 10⁻⁵ mol), PEGA₄₈₀ (719 μ L, 20 eq.) and H₂O (2 mL). The mixture was left to stir until complete dissolution of the monomer (typically 1 minutes) and deoxygenated with nitrogen for 10 minutes. The solution was cannulated into the Schlenk tube and the reaction was left to polymerize at 0°C.

Disproportionation of Cu(I)Br in the presence of Me₆-TREN to catalyse the polymerization of PEGA₄₈₀ DP_n =40 in H₂O.

To an oven dried Schlenk tube fitted with a magnetic stirring bar and rubber septum was added H₂O (2 mL), Me₆-TREN (11 μ L, 0.6 eq.) and Cu(I)Br (9.4 mg, 0.8 eq.). The solution was left to degas for 20 minutes and to stir for an extra 10 minutes. In a vial fitted with a rubber septum and magnetic stirring bar was charged with poly(ethylene glycol) bis(2-bromoisobutyrate) (100 mg, 8.1 10⁻⁵ mol), PEGA₄₈₀ (1.44 mL, 40 eq.) and H₂O (4 mL). The mixture was left to stir until complete dissolution of the monomer (typically 1 minutes) and deoxygenated with nitrogen for 10 minutes. The solution was cannulated into the Schlenk tube and the reaction was left to polymerize at 0°C.

Figure S25. Monitoring of the polymerization of poly(ethylene glycol) methyl ether acrylate (av. M_w =480 g.mol⁻¹) in H₂O at 0°C after 30 minutes by ¹H NMR (D₂O, 250 MHz).

Figure S26. SEC traces (DMF eluent) of poly[poly(ethylene glycol) methyl ether acrylate] (> 95 % conv. by ¹H NMR) with different degrees of polymerization, initiated by poly(ethylene glycol) bis(2-bromoisobutyrate).

Post-polymerization modifications

Hydrophobic modification of telechelic poly(NIPAAm) with butyl isocyanate.

 α, ω -Hydroxyl terminated poly(NIPAAm) (M_n 5600 g.mol⁻¹, 50 mg, 8.9 10⁻⁶ mol) was added to a 50 mL RB flask equipped with a magnetic stirring bar and a rubber septum. The polymer was dried under vacuum at 70°C overnight before anhydrous DMF (10 mL) was added under nitrogen flow. Butyl isocyanate (40 µL, 40 eq.) and dibutyltin dilaureate (3 drops) were added via a deoxygenated syringe. The reaction mixture was placed in an oil bath at 60°C and left to stir for 9h. Following the reaction, the solution was dialyzed over deionized water (MWCO 3.5 kDa) for one week. The success of the functionalization of the hydroxyl end groups was assessed by ¹H NMR.

Figure S27. ¹H NMR (d_6 -DMSO, 400 MHz) of butyl isocyanate modified poly(N-isopropylacrylamide)₁₀-b-poly(ethylene glycol)-b-poly(N-isopropylacrylamide)₁₀.

Figure S28. COSY (d_6 -DMSO, 400 MHz) of butyl isocyanate modified poly(N-isopropylacrylamide)₁₀-b-poly(ethylene glycol)-b-poly(N-isopropylacrylamide)₁₀.

Figure S29. ¹H NMR (d_6 -DMSO, 400 MHz) of butyl isocyanate modified poly(N-isopropylacrylamide)₁₀-b-poly(ethylene glycol)-b-poly(N-isopropylacrylamide)₁₀ with assigned integrations.

Figure S30. DLS measurement of 1 mg/mL solution of hydrophobically modified $poly(N-isopropylacrylamide)_{10}$ -*b*-poly(ethylene glycol)-*b*-poly(*N*-isopropylacrylamide)_{10} in water, by intensity.

Figure S31. DLS measurement of 1 mg/mL solution of hydrophobically modified $poly(N-isopropylacrylamide)_{10}$ -*b*-poly(ethylene glycol)-*b*-poly(*N*-isopropylacrylamide)_{10} in water, by intensity.

Cloud points recording and evolutions

Cloud point recording by UV-Vis spectroscopy.

A solution of 1 mg/mL of (co)polymer in deionised water was prepared and left to stir for 2 hours at ambient temperature. Subsequently 1 mL of the solution was placed in a plastic cuvette and left to equilibrate at 20°C for 5 minutes into the UV-Vis spectrometer. A temperature ramp from 20°C to 90°C was then applied with a gradient of 1°C/min and the absorbance recorded at λ =650 nm.

The cloud point temperature was then extracted from positive curvature point of the recorded curve.

Figure S32. Cloud point recording of poly(*N*-isopropylacrylamide)₃₀ initiated by 3-dihydroxypropyl 2-bromo-2-methylpropanoate in H₂O.

Figure S33. Cloud point recording of poly(*N*-isopropylacrylamide)-*b*-poly(ethylene glycol)-*b*-poly(*N*-isopropylacrylamide) in H₂O, $DP_n=20$.

Figure S34. Cloud point recording of poly(*N*-isopropylacrylamide)-*b*-poly(ethylene glycol)-*b*-poly(*N*-isopropylacrylamide) in H₂O, DP_n =40.

Figure S35. Cloud point recording of poly(*N*-isopropylacrylamide)-*b*-poly(ethylene glycol)-*b*-poly(*N*-isopropylacrylamide) in H₂O, DP_n =80.

Figure S36. Cloud point recording of poly(*N*-isopropylacrylamide)-*b*-poly(ethylene glycol)-*b*-poly(*N*-isopropylacrylamide) in H₂O, DP_n =160.

Figure S37. Cloud point recording of poly(*N*-isopropylacrylamide)-*b*-poly(ethylene glycol)-*b*-poly(*N*-isopropylacrylamide) in H₂O, DP_n =320.

Figure S38. Evolution of the cloud point temperature of poly(N-isopropylacrylamide)-b-poly(ethylene glycol)-b-poly(N-isopropylacrylamide) in H₂O in function of the observed molecular weight (SEC, DMF eluent) and the solution concentration.

Figure S39. Cloud point recording of poly(N-isopropylacrylamide)-b-poly(ethylene glycol)-b-poly(N-isopropylacrylamide) in H₂O with different degrees of polymerization (1 mg.mL⁻¹ solution).

References

- 1. M. Ciampolini and N. Nardi, *Inorg. Chem.*, 1966, **5**, 41-44.
- 2. S. Perrier, S. P. Armes, X. S. Wang, F. Malet and D. M. Haddleton, J. Polym. Sci., Part A: Polym. Chem., 2001, **39**, 1696-1707.
- 3. Q. Zhang, P. Wilson, Z. Li, R. McHale, J. Godfrey, A. Anastasaki, C. Waldron and D. M. Haddleton, *J. Am. Chem. Soc.*, 2013, **135**, 7355-7363.