Electronic Supplementary Information

Design and Synthesis of Nucleobase-Incorporated Metal-Organic Materials

Muwei Zhang, [†] Weigang Lu, [†] Jian-Rong Li, *^{†‡} Mathieu Bosch, [†] Ying-Pin Chen, ^{†§} Tian-Fu Liu, [†] Yangyang Liu, [†] Hong-Cai Zhou *^{†§}

† Department of Chemistry, Texas A&M University, College Station, Texas, 77842, USA

§ Department of Materials Science and Engineering, Texas A&M University, College Station, Texas, 77842, USA

‡ College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China

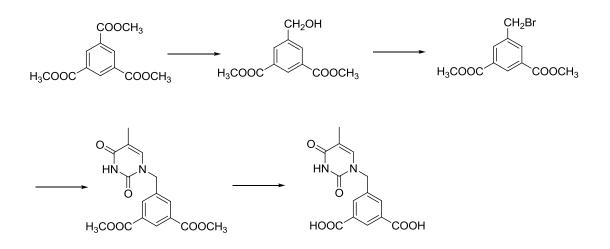
*To whom correspondence should be addressed.

Dr. J.-R. Li Email: jrli@bjut.edu.cn

Dr. H.-C. Zhou Email: zhou@chem.tamu.edu

Tel: +1 (979) 845-4034; Fax: +1 (979) 845-1595

Contents


- Section 1. Materials and Instrumentation
- Section 2. Ligand Synthesis
- Section 3. Syntheses of PCN-530 and TMOP-1
- Section 4. Single-Crystal X-ray Crystallography of PCN-530 and TMOP-1
- Section 5. High-Resolution Figures of PCN-530 and TMOP-1
- Section 6. The ¹H NMR of Selected Compounds
- Section 7. Funding Resources of All Contributors

Section 1. Materials and Instrumentation

The H₃TATB (4,4',4''-*s*-triazine-2,4,6-triyl-tribenzoic acid) was synthesized by a reported procedure. ¹ All commercial chemicals were purchased from VWR and used without further purification unless otherwise mentioned. The dry THF was produced by a THF still. ¹H nuclear magnetic resonance (NMR) data were recorded on a Mercury 300 MHz NMR spectrometer at the Center for Chemical Characterization and Analysis (CCCA), Department of Chemistry, Texas A&M University. Fourier transform infrared spectroscopy (FTIR) data were collected using a SHIMADZU IRAffinity-1 FTIR Spectrophotometer.

Section 2. Ligand Synthesis

The ligand H_2MDPI (5-((5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl) methyl)isophthalic acid) was synthesized from the following route (Scheme S1).

Scheme S1. The synthesis of H₂MDPI Ligand

1) Dimethyl-5-(hydroxymethyl)isophthalate

Dimethyl-5-(hydroxymethyl)isophthalate was synthesized by a reported procedure with some modifications.² Trimethyl-1,3,5-tricarboxybenzoate (10 g, 39.65 mmol), NaBH₄ (1.8 g, 47.58 mmol) and 30 mL dry THF were charged in a round bottom flask equipped with a condenser under N₂ atmosphere. The resulting suspension was cooled in ice bath. A mixture of THF/MeOH (25 mL/7.4 mL) was added dropwise while stirring. After the addition, the ice bath was removed, and the reaction mixture was refluxed for 1 h. After cooling down to R. T., the reaction was slowly quenched with 40 mL 1 N HCl. The reaction mixture was then extracted with EtOAc (3×50 mL). The organic phase was combined and washed with NaHCO₃ (aq), brine, and water, and then dried over anhydrous MgSO₄. After filtration, the solvent was removed by rotavap, and the crude product was purified by silica gel column chromatography with EtOAc/hexanes (40%) to afford 5.30 g (23.60 mmol, yield 60%) pure product as white solid. Analytical data were in good agreement with the reported data. ¹H NMR (300 MHz, CDCl₃): $\delta = 8.59$ (t, J = 1.5 Hz, 1H), 8.23 (d, J = 1.5 Hz, 2H), 4.81 (d, J = 6.0 Hz, 2H), 3.95 (s, 6H), 1.98 (t, J = 6.0 Hz, 1H).

2) Dimethyl-5-(bromomethyl)benzene-1,3-dioate

Dimethyl-5-(bromomethyl)benzene-1,3-dioate was synthesized by a reported procedure with some modifications. 3 To a solution of dimethyl-5-(hydroxymethyl)isophthalate (4.0 g, 17.84 mmol) and carbon tetrabromide

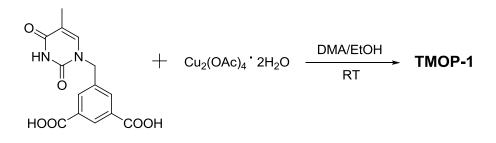
(6.1 g, 18.39 mmol) in 50 mL CH₂Cl₂, cooled to 0°C, was added dropwise a solution of triphenylphosphine (5.0 g, 19.06 mmol) in 30 mL CH₂Cl₂. The reaction was stirred at 0°C for 1.5 h, diluted with another 50 mL of CH₂Cl₂, washed with water and brine, dried over MgSO₄. After filtration, the solvent was removed by rotavap, and the crude product was purified by silica gel column chromatography with CH₂Cl₂ to afford 4.5 g (15.67 mmol, yield 88%) pure product as white solid. Analytical data were in good agreement with the reported data. ¹H NMR (300MHz, CDCl₃): δ = 8.63 (t, J = 1.5 Hz, 1H), 8.27 (d, J = 1.5 Hz, 2H), 4.56 (s, 2H), 3.98 (s, 6H).

3) Dimethyl 5-((5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)methyl) isophthalate

To a mixture of thymine (0.65 g, 5.15 mmol) and K₂CO₃ (0.73 g, 5.29 mmol) in 20 mL DMF, dimethyl-5-(bromomethyl)benzene-1,3-dioate (0.50 g, 1.74 mmol) was added slowly at room temperature in 5 min. The resulting mixture was heated up to 60°C overnight. After cooling down, 100 mL of water was added, and then extracted with EtOAc (6 × 25 ml). The organic phase was dried over MgSO₄. After filtration, the solvent was removed by rotavap, and the crude product was purified by silica gel column chromatography with EtOAc/CH₂Cl₂ (10 – 40%) to afford 0.48 g (1.44 mmol, yield 83 %) pure product as white solid. ¹H NMR (300MHz, DMSO-d₆): δ = 11.36 (s, 1H), 8.39 (t, *J* = 1.5 Hz, 1H), 8.15 (d, *J* = 1.5 Hz, 2H), 7.73 (d, *J* = 1.2 Hz, 1H), 4.95 (s, 2H), 3.87 (s, 6H), 1.73 (d, *J* = 1.2 Hz, 3H).

4) 5-((5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)methyl)isophthalic acid, H₂MDPI

To a mixture of the diester (0.72 g, 2.17 mmol) in MeOH/H₂O (100 mL/40 mL), LiOH (0.60 g, 14.3 mmol) was slowly added. The resulting mixture was stirred at room temperature overnight. After removal of the majority of MeOH *in vacuo*, and the rest part of reaction mixture was acidified with 1 N HCl till pH = 2. Precipitate was collected and washed with water twice, dried to afford pure product (0.45 g, 1.48 mmol, yield 68 %) as white solid. ¹H NMR (300MHz, DMSO- d_6): $\delta = 13.37$ (s, 2H), 11.39 (s, 1H), 8.39 (t, J = 1.5 Hz, 1H), 8.10 (d, J = 1.5 Hz, 2H), 7.74 (d, J = 1.2 Hz, 1H), 4.96 (s, 2H), 1.76 (d, J = 1.2 Hz, 3H).


Section 3. Syntheses of PCN-530 and TMOP-1

1) PCN-530, $Zn_3[Zn_2(\mu_2-H_2O)]_3(Ad)_6(TATB)_4(DMF)$

Adenine (16.9 mg, 0.125 mmol), H_3TATB (74 mg, 0.17 mmol) and $Zn(OAc)_2 \cdot 2H_2O$ (83 mg, 0.375 mmol) were ultrasonically dissolved in 10 mL of DMF in a 20 mL Pyrex vial and many white precipitates formed instantaneously. A minimal amount of concentrated HBF₄ (48% w/w in water) were added dropwise to dissolve all the precipitate and make it a clear solution before deionized water (1 mL) was added. The mixture was then heated in a 120 °C oven for 48 h. Large, colorless,

blocky single crystals of PCN-530 were yielded and harvested (26 mg, 39% based on adenine).

2) TMOP-1, Cu₂₄(MDPI)₂₄(DMA)₄(H₂O)₂₀

An N, N'-dimethylacetamide (DMA) solution (1 mL) of H₂MDPI (15 mg, ~0.05 mmol) was mixed with a DMA solution (10 mL) of Cu₂(OAc)₄·2H₂O (10 mg, ~0.025 mmol) in a glass vial (4 mL) and stirred for 5 min at room temperature. After stirring, 1.5 mL EtOH was layered upon this solution and then allowed the vial stand at room days homogeneous green-blue temperature. After 5 block crystals of $Cu_{24}(MDPI)_{24}(DMA)_4(H_2O)_{20} \cdot xS$ (TMOP-1, where S represents non-assignable solvent molecules) were collected and washed with a little EtOH (yield, ~15 mg). The crystals of TMOP-1 slowly lose transparency when solvent molecules evacuated in air for a longer time. This compound is insoluble in DMA, DMSO, MeOH, THF, acetone, and H₂O.

Section 4. Single-Crystal X-ray Crystallography of PCN-530 and TMOP-1

The crystals of both PCN-530 and TMOP-1 were taken from the mother solution directly, transferred into oil, and mounted onto a loop for single crystal X-ray data collection. Diffractions were measured on a Bruker Smart Apex diffractometer equipped with a Mo-K α sealed-tube X-ray source ($\lambda = 0.71073$ Å, graphite monochromator) and a cooling device (110 K). The data frames were recorded using APEX2 and processed using *SAINT* within APEX2. The data were corrected for absorption and beam corrections based on the semi-empirical technique as implemented in *SADABS*. The structures were solved by direct methods using *SHELXS* and refined by full-matrix least-squares on F² using *SHELXL* in OLEX2.*

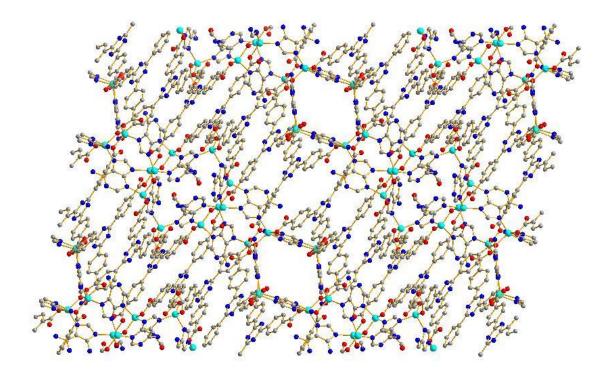
PCN-530 was integrated and refined in the triclinic crystal system. *XPREP* showed an R(sym) of 0.000 as standard for the Bravais lattice, Triclinic P. There was no more probable reasonable symmetry shown. XPREP listed 2 possible space groups, P Γ and P1, for centrosymmetric CFOM 2.14 and noncentrosymmetric CFOM 8.48 respectively. Mean |E*E-1| of 0.986 also indicated a centrosymmetric space group and thus P Γ was chosen. We obtained an R value of 0.0493 and wR₂ of 0.1221 after using the SQUEEZE routine in PLATON for the solution in P Γ .

For PCN-530, no disorder modeling or restraints (except for hydrogen) were necessary. Thermal parameters were reasonable for the framework.

The thymine MOP was integrated and refined in the triclinic crystal system. *XPREP* showed an R(sym) of 0.000 as standard for the Bravais lattice, Triclinic P. The next most probable symmetry was Monoclinic C or I, both of which had an R(sym) of 0.621 and were dismissed. XPREP listed 2 possible space groups, P Γ and P1, for centrosymmetric CFOM 3.21 and noncentrosymmetric CFOM 7.88 respectively. Mean |E*E-1| of 0.950 also indicated a centrosymmetric space group and thus P Γ was chosen. We obtained an R₁ of 0.0997 for and a wR₂ of 0.2557 after using the SQUEEZE routine in PLATON for the solution in P Γ .

For the TMOP-1 refinement, AFIX and DFIX restraints were used on several of the disordered thymine moieties, and PART and SPLIT commands combined with partial occupancy were used to model disorder on these moieties. Several other thymine moieties required no restraints or disorder modeling, and appeared to be in more confined and hydrogen-bonded parts of the structure and thus have a more consistent position.

For both solutions, all non-hydrogen atoms were refined with anisotropic displacement parameters during the final cycles. Organic hydrogen atoms were located in calculated positions with isotropic displacement parameters set to $1.2 \times U_{eq}$ of the attached atoms. The solvent molecules were highly disordered, and attempts to locate and refine the solvent peaks were unsuccessful. Contributions to scattering due to these solvent molecules were removed using the *SQUEEZE* routine of *PLATON*;^{**} structures were then refined again using the data generated. The contents of the


solvent region are not represented in the unit cell contents in the crystal data. The CIF files can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif (CCDC 962335 for PCN-530 and 962336 for TMOP)

*APEX2 v2012.2.0 and SAINT v7.68A data collection and data processing programs, respectively. Bruker Analytical X-ray Instruments, Inc., Madison, WI; SADABS v2008/1 semi-empirical absorption and beam correction program. G.M. Sheldrick, University of Göttingen, Germany.

G. M. Sheldrick, *SHELXTL*, Version 6.14, Structure Determination Software Suite, Bruker AXS, Madison, WI, **2003.

Compoun	d PCN-530	Compound	TMOP-1
Formula	$C_{129}H_{79}N_{43}O_{28}Zn_9$	Formula	$C_{184}H_{156}N_{28}O_{84}Cu_{12}$
CCDC #	962335	CCDC #	962336
Fw	3267.68	Fw	4865.85
Shape	Block	Shape	Block
Crystal system	Triclinic	Crystal system	Triclinic
Space group	PT	Space group	PT
<i>a</i> (Å)	19.801(7)	<i>a</i> (Å)	27.990(3)
<i>b</i> (Å)	20.162(7)	<i>b</i> (Å)	28.102(3)
<i>c</i> (Å)	27.225(9)	<i>c</i> (Å)	28.303(5)
α(9	97.544(5)	α(9	109.319(2)
β(9	100.609(5)	β(9	106.426(2)
γ(9	111.627(5)	γ(9	107.182(1)
$V(\text{\AA}^3)$	9692(6)Å ³	$V(\text{\AA}^3)$	18196(4)
Ζ	2	Ζ	2
$d_{\text{calcd.}}$ (g/cm ³)	1.120	$d_{\rm calcd.}$ (g/cm ³)	0.888
$\mu(\text{mm}^{-1})$	1.156	$\mu(\text{mm}^{-1})$	0.744
<i>F</i> (000)	3296	<i>F</i> (000)	4952
θ_{max} [deg]	22.62	θ_{max} [deg]	26.00
Completeness	0.991	Completeness	0.995
Collected reflections	56718	Collected reflections	190892
Unique reflections	25509	Unique reflections	71236
Parameters	1882	Parameters	2158
Restraints	0	Restraints	171
R _{int}	0.0615	R _{int}	0.0761
<i>R</i> 1 [I > $2\sigma(I)$]	0.0492	$R1 [I > 2\sigma(I)]$	0.1014
$wR2 [I > 2\sigma(I)]$	0.1221	$wR2 [I > 2\sigma(I)]$	0.2622
<i>R</i> 1 (all data)	0.0836	R1 (all data)	0.1691
wR2 (all data)	0.1321	wR2 (all data)	0.2841
GOF on F^2	1.003	GOF on F^2	1.006
$\Delta\rho_{max}\!/\Delta\rho_{min}~[e{\cdot}{\rm \AA}^{\text{-3}}]$	1.44/-0.44	$\Delta \rho_{max} / \Delta \rho_{min} \ [e \cdot Å^{-3}]$	2.22/-1.62

Section 5. High-Resolution Figures of PCN-530 and TMOP-1

Figure S1 The crystal structure of PCN-530 along *a* axis. Windows with the size of 7.4×11.9 Å are presents in this direction. The grey, red, blue and cyan spheres represent C, O, N and Zn, respectively. H atoms were omitted for clarity.

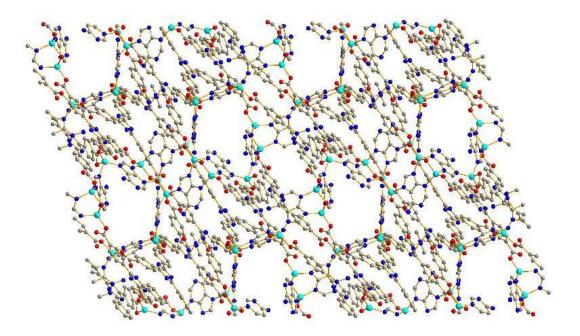
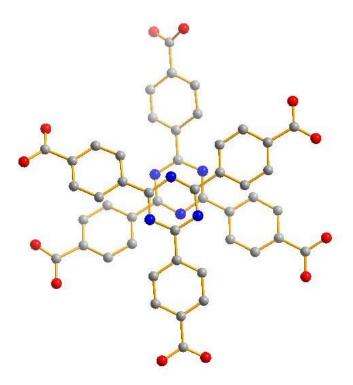
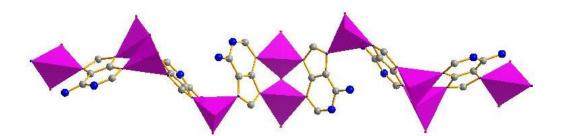
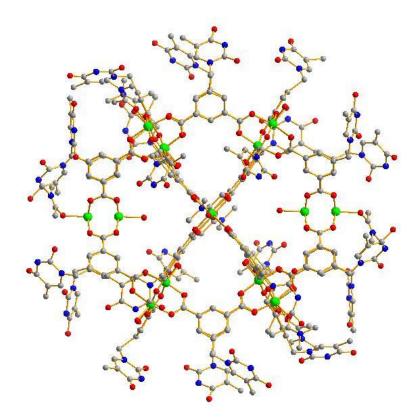
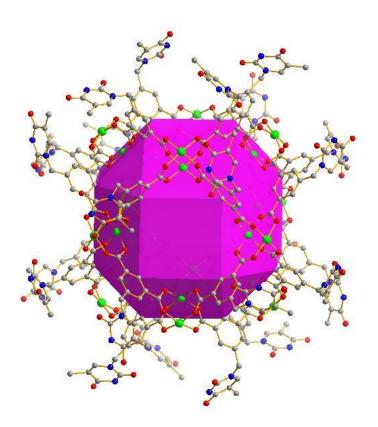


Figure S2 The crystal structure of PCN-530 along *b* axis.


Figure S3 The staggered conformation of the stacking of TATB ligand.

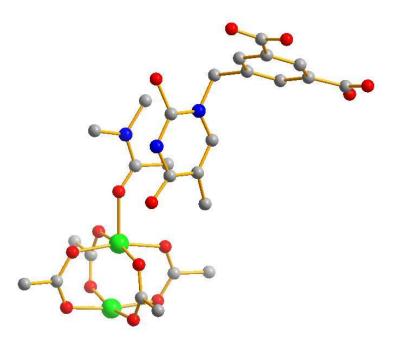

Figure S4 The graphic representation of the one-dimensional zinc-adeninate chain. All the zinc centers were represented by pink polyhedra.

Figure S5 The crystal structure of TMOP-1. The picture was derived when disorders were removed. The grey, red, blue and green spheres represent C, O, N and Cu, respectively. H atoms were omitted for clarity.

Figure S6 The polyhedron view of TMOP-1. The polyhedron indicates the empty space inside the MOP. All the coordinating solvents were omitted for clarity.

Figure S7 The π - π stacking between a coordinating DMA and a neighboring thymine

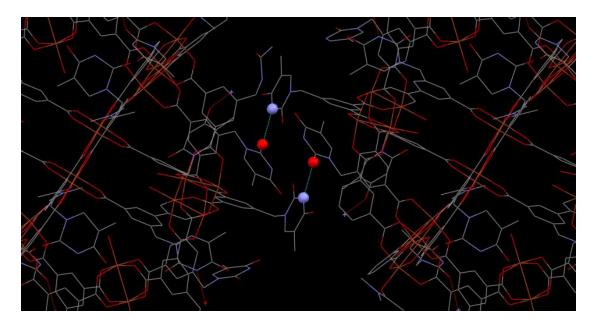


Figure S8 The hydrogen bonding between two adjacent thymine moieties

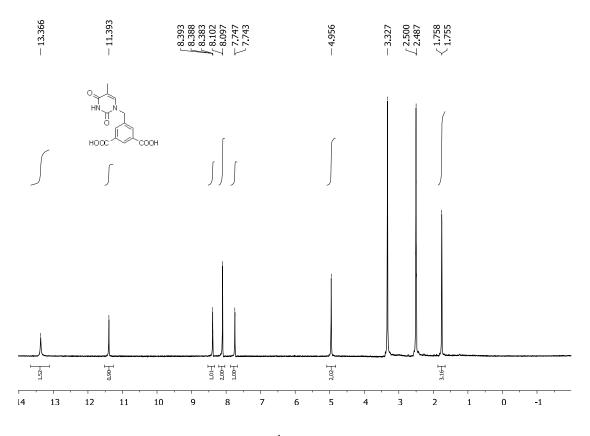


Figure S8 The ¹H NMR of H₂MDPI

Section 7. Funding Resources of All Contributors

The authors sincerely acknowledge the following funding resources:

M. Z. was supported by DE-FC36-07GO17033

W. L. was supported by A-1725

J.-R. L. was supported by DE-FC36-07GO17033

M. B. was supported by the Chemistry Department at Texas A&M University.

Y.-P. C. was supported by DE-FC36-07GO17033

T.-F. L. was supported by DE-SC0001015

Y. L. was supported by DE-FC36-07GO17033

References:

- 1. Sun, D.; Ma, S.; Ke, Y.; Petersen, T. M.; Zhou, H.-C., *Chem. Commun.* **2005**, 2663-2665.
- 2. Rochford, J.; Galoppini, E., *Langmuir* **2008**, *24*, 5366-5374.

3. Barrow, J. C.; Coburn, C. A.; Mcgaughey, G. B.; Nantermet, P. G.; Rajapakse, H. A.; Selnick, H. G.; Stauffer, S. R. 1,3,5-substituted phenyl derivative compounds useful as beta-secretase inhibitors for the treatment of alzheimer's disease. WO2005103020 (A1) Nov 3, 2005.