Supporting Information

Interaction of Alkynes with Palladium POCOP-Pincer Hydride Complexes and Its Unexpected Relation to Palladium-Catalyzed Hydrogenation of Alkynes

Anubendu Adhikary, Jason R. Schwartz, Lonnie M. Meadows, Jeanette A. Krause and Hairong Guan*

Department of Chemistry, University of Cincinnati, P. O. Box 21072, Cincinnati, Ohio 45221-0172, United States

Procedures for the DLS experiments	S2
ORTEP drawings of palladium pincer complexes 1a, 1c, 2a, 2c, 3a, 4b and 5b	S2-S5
Summary of crystallographic data for the palladium pincer complexes	S6

Procedures for the DLS Experiments. Under an argon atmosphere, in two separate J. Young NMR tubes, complex **5b** (0.0125 mmol) was dissolved in 0.5 mL of toluene- d_8 . One of the samples (**B**) was degassed by a freeze-pump-thaw cycle and then mixed with 1 atm of H₂, while the other sample (**A**) was kept under argon. After 12 h at room temperature, sample **B** changed from colorless to faint yellow while sample **A** remained colorless even after 48 h. Neither ¹H NMR nor ³¹P{¹H} NMR spectra of the two samples showed any sign of decomposition. Both samples were diluted with toluene and examined by a particle size analyzer using dynamic light scattering techniques (toluene was used as reference). Sample **B** revealed particles distributed in the range of 0.18-0.30 µm. When centrifuged, sample **B** also showed some black particles. Appearance of the two samples before centrifugation is shown in Fig. S1.

Fig. S1 Toluene solutions of 5b with (sample B) and without (sample A) exposure to H₂.

Fig. S2 ORTEP drawing of $[2,6-(Bu_2PO)_2C_6H_3]PdCl$ (1a) at the 50% probability level. Hydrogen atoms are omitted for clarity.

Fig. S2 ORTEP drawing of $[2,6-(^{\circ}Pe_{2}PO)_{2}C_{6}H_{3}]PdCl$ (**1c**) at the 50% probability level. Hydrogen atoms are omitted for clarity.

Fig. S3 ORTEP drawing of $[2,6-({}^{t}Bu_{2}PO)_{2}C_{6}H_{3}]PdH$ (**2a**) at the 50% probability level. Hydrogen atoms are omitted for clarity.

Fig. S4 ORTEP drawing of $[2,6-(^{\circ}Pe_2PO)_2C_6H_3]PdH$ (**2c**) at the 50% probability level. Hydrogen atoms are omitted for clarity.

Fig. S5 ORTEP drawing of $[2,6-({}^{t}Bu_{2}PO)_{2}C_{6}H_{3}]PdC=CPh$ (**3a**) at the 50% probability level. Hydrogen atoms are omitted for clarity.

Fig. S6 ORTEP drawing of (E)-[2,6-(ⁱPr₂PO)₂C₆H₃]PdCH=CHPh (**4b**) at the 50% probability level. Hydrogen atoms are omitted for clarity.

Fig. S7 ORTEP drawing of $[2,6-({}^{i}Pr_{2}PO)_{2}C_{6}H_{3}]PdCH_{3}$ (**5b**) at the 50% probability level. Hydrogen atoms are omitted for clarity.

		Tabl	e SI Summary of c	rystallographic da	ta		
	1a	1c	2a	2c	3 a	4b	Sb
empirical formula	$C_{22}H_{39}O_2P_2CIP$	$C_{26}H_{39}O_2P_2CIPd$	$C_{22}H_{40}O_2P_2Pd$	$C_{26}H_{40}O_2P_2Pd$	$3(C_{30}H_{44}O_2P_2Pd)$	$C_{26}H_{38}O_2P_2Pd$	$C_{19}H_{34}O_2P_2Pd$
formula weight	539.32	587.36	504.88	552.92	1814.98	550.90	462.80
temp, K	150(2)	150(2)	150(2)	150(2)	150(2)	150(2)	150(2)
crystal system	triclinic	tetragonal	monoclinic	monoclinic	monoclinic	monoclinic	triclinic
space group	P-1	I-42d	P2 ₁ /c	$P2_1/n$	Pc	$P2_1/m$	P-1
a, Å	8.3191(2)	21.578(2)	16.4881(2)	12.2605(2)	26.224(3)	7.8023(2)	8.0315(2)
b, Å	12.0094(2)	21.578(2)	10.6035(1)	17.3087(4)	15.8839(18)	14.4839(4)	10.3766(2)
c, Å	13.3760(2)	11.5095(13)	15.7094(2)	12.3482(2)	11.0864(12)	12.0669(3)	14.2789(3)
α , deg	100.296(1)	90	06	90	90	90	100.667(1)
β, deg	96.127(1)	90	114.927(1)	99.811(1)	96.9650(16)	101.659(2)	103.372(1)
γ, deg	103.903(1)	90	90	90	90	90	101.595(1)
Volume, $Å^3$	1260.55(4)	5358.8(9)	2490.65(5)	2582.13(8)	4583.9(9)	1335.52(6)	1100.12(4)
Ζ	2	8	4	4	2	2	2
$d_{cale}, g/cm^3$	1.421	1.456	1.346	1.422	1.315	1.370	1.397
$\lambda, Å$	1.54178	0.88560	1.54178	1.54178	0.77490	1.54178	1.54178
μ, mm ⁻¹	8.220	1.650	7.319	7.115	0.915	6.878	8.235
no. of data collected	10578	24904	20794	21918	57801	10793	9168
no. of unique data	4321	2737	4482	4651	22449	2453	3781
R _{int}	0.0187	0.0987	0.0337	0.0470	0.0558	0.0300	0.0278
Goodness-of-fit on F^2	1.050	1.049	1.043	1.047	1.023	1.055	1.057
R1, wR2 (I > $2\sigma(I)$)	0.0284, 0.0755	0.0298, 0.0756	0.0270, 0.0688	0.0339, 0.0815	0.0389, 0.0861	0.0273, 0.0693	0.0315, 0.0803
R1, wR2 (all data)	0.0301, 0.0766	0.0313, 0.0763	0.0308, 0.0710	0.0458, 0.0876	0.0540, 0.0926	0.0318, 0.0720	0.0347, 0.0827

Table S1
Summary
of crysta
llographic
; data