Supporting Information

SU-79: A Novel Germanate with 2D 10-Ring Channels Templated by a Square-Planar Nickel Complex

Shiliang Huang^{a,b}, Jie Su^{a,*}, Kirsten Christensen^c, A. Ken Inge^d, Jie Liang^a, Xiaodong Zou^a and Junliang Sun^{a,e,*}

^a Berzelii Centre EXSELENT on Porous Materials and Inorganic and Structural Chemistry, Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden.

^b Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China.

^c Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Dicot, Oxfordshire OX11 0DE, United Kingdom.

^d Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 2, D-24118 Kiel, Germany

^e College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

* E-mail: junliang.sun@pku.edu.cn, jie.su@mmk.su.se.

Contents

1. Chemical formula determination of SU-79

2. Figures:

- Fig. S1 TEM image of the selected micro-domain of the SU-79 crystal.
- Fig. S2 Experimental and simulated powder X-ray diffraction patterns of SU-79.
- Fig. S3 Fan-shaped 11-ring in SU-79.
- Fig. S4 Helical chains in SU-79.
- Fig. S5 Thermogravimetric analysis of SU-79.
- Fig. S6 FT-IR spectrum of SU-79.
- Fig. S7 UV-Vis diffuse-reflection spectra of SU-79.
- Fig. S8 Ni 2p XPS spectrum of SU-79.

3. Tables:

Table S1. Crystallographic Data for SU-79.

Table S2. Hydrogen bond lengths (Å) and angles (°) for SU-79.

1. Chemical formula determination of SU-79

From the structure refinement result, we can deduce that the chemical formula of the SU-79 framework is [Ge12.5O26(OH)2]4-, and one 1,2-H2pda2+ ion at special positions and one $[Ni(C_3N_2H_{10})_2]^{2+}$ at general position also can be observed. The ICP result revealed that the Ge/Ni ratio (11.0) is much lower than the expected value (12.5), which means more Ni complexes may exist in channels. From the CHN analysis, the molar ratio of C/N=1.33 is lower than the ratio for 1,2-pda (C/N=1.5), indicating the decomposition of 1,2-pda. Based on the results of ICP and CHN analysis, as well as the residual peaks in the structure refinement, we deduced that $Ni(1,2-pda)^{2+}$ complexes and NH₄⁺ ions can be occupied in channels with the occupancies of 0.1 and 0.8, which can also balance the chance from the framework, and additional 1.5 1,2-pda molecules also reside in channels. The water content was deduced from the ratio of H/N = 5.37, suggesting two water molecules per asymmetric unit. Finally, the chemical composition of SU-79 was determined $[Ge_{12.5}O_{26}(OH)_2][Ni(C_3N_2H_{10})_2]_{1.1}(NH_4)_{0.8}(C_3N_2H_{12})_{0.5}(C_3N_2H_{10})_{1.5}(H_2O)_2$. Anal. Calcd for SU-79: N 7.22%, C 8.47%, H 2.84%. Found: N 7.33%, C 8.38%, H 2.83%. Thermogravimetric analysis for SU-79 shows a weight loss of 22.08% between 40 and 900°C, as shown in Figure S5, which agrees well with the expected value (22.62%) of the removal of all guest molecules from the structure.

Fig. S1 TEM image of the selected micro-domain of the SU-79 crystal from which the RED data was collected.

Fig. S2 Experimental and simulated powder X-ray diffraction patterns of SU-79 (λ =0.82695 Å). The difference of the intensity in experimental and simulated pattern is due to the preferred orientation of the as-synthesized SU-79 crystals.

Fig. S3 Fan-shaped 11-ring in SU-79. Four Ge_{10} clusters link to each other by sharing corners to form a 12-ring (a), which is converted into a fan-shaped 11-ring (c) via connections of three additional tetrahedra (b).

Fig. S4 Helical chains in SU-79.

Fig. S5 Thermogravimetric analysis of SU-79. The weight loss of 22.08% between 40 and 900°C agrees well with the calculated value (22.62%) of the removal of all guest molecules from the structure. The weight lost and increase between 650 °C and 900 °C can be attributed to the reduction and reoxidization of germanium and nickel under the air condition. (J. Su, et al. *Inorg. Chem.*, 2010, **49**, 9765–9769.)

Fig. S6 FT-IR spectrum of SU-79. The peaks at 3213, 3126 and 2883-2984 cm⁻¹ correspond to the stretching vibrations of OH, NH₂ and CH₂ groups. The bending bands of NH₂ and CH₂ are observed at around 1591 and 1456 cm⁻¹. The peaks at 931, 870 and 830 cm⁻¹ can be assigned to Ge-O vibrations of the tetrahedral and octahedral germanium polyhedral. The symmetrical vibrations of Ge-O are observed at 756 cm⁻¹. The absorption bands at 473 and 413 cm⁻¹ can be assigned to the asymmetric stretching vibrations of Ge-O bonds. (H. Zhang, et al. *Inorg. Chem.*, 2003, **42**, 6595; Z. Lin, et al. *Angew. Chem. Int. Ed.*, 2005, **44**,6881.)

Fig. S7 UV-Vis diffuse-reflection spectrum of (a) SU-79 and (b) a standard nickel complex with the square-planar geometry. Peak positions: 331nm and 441nm in SU-79; 306 nm and 423 nm in nickel metfomin.

Fig. S8 Ni 2p XPS spectrum of SU-79. The two peaks around the banding energy 873eV and 856eV confirm the presence of Ni2+ in the SU-79.

Sample Name	SU-79
Chemical Formula	$[Ge_{12.5}O_{26}(OH)_2][Ni(C_3N_2H_{10})_2]_{1.1}(NH_4)_{0.8}(C_3N_2H_{12})_{0.5}(C_3N_2H_{10})_{1.5}(H_2O)_2^a$
Formula weight ^a	1075.26
Temperature (K)	150(2)
Wavelength (Å)	0.6889
Crystal system	Monoclinic
Space group	C2/c
Unit cell	$a = 37.7974(11)$ Å, $b = 10.4874(2)$ Å, $c = 20.9666(4)$ Å, $\beta = 106.765(3)$ °
Volume (Å ³)	7957.8(3)
Ζ	4
Density (calculated)	2.743
Absorption coefficient	9.853
<i>F</i> (000)	6239
Crystal size (mm ³)	0.50×0.50×0.10
Crystal color	Yellow
Theta range	2.19-26.41
Index ranges	$-47 \le h \le 46, -13 \le k \le 13, -26 \le l \le 26$
Completeness	0.977
Reflections collected	35737
Unique reflections	7998
R _{int}	0.0449
Observed reflections	7414
GOF	1.033
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0599, \ wR_2 = 0.1750$
R indices (all data)	$R_1 = 0.0633, \ wR_2 = 0.1784$

Table S1. Crystallographic Data for SU-79

^{*a*} The formula here includes 1,2-pda and water, which could not be located in the structure refinement but were estimated from elemental analysis.

D-HA	D(D-H)	D(HA)	D(DA)	∠(DHA)
O27-H27O28	0.820	2.073	2.787	145.39
O28-H28O16	0.820	2.445	3.219	157.66
O28-H28O4	0.820	2.626	3.208	129.22
N1-H1BO11	0.900	2.192	2.969	144.15
N1-H1BO16	0.900	2.586	3.200	126.06
N2-H2AO15	0.900	2.364	3.192	153.01
N2-H2AO8	0.900	2.438	3.189	141.14
N2-H2BO18	0.900	2.429	3.196	143.30
N2-H2BOw1	0.900	2.431	2.940	116.08
N3-H3AO10	0.900	2.232	3.053	151.41
N3-H3AO11	0.900	2.401	3.135	138.79
N3-H3BO25	0.900	2.276	3.071	147.12
N4-H4AOw1	0.900	2.180	2.923	139.43
N4-H4BO8	0.900	2.226	3.037	149.81
N4-H4BO14	0.900	2.587	3.190	129.97
Ow1-Hw1AO14	0.962	1.784	2.738	170.51
Ow1-Hw1BO27	0.963	1.861	2.676	140.54
N5-H5AO13	0.890	2.305	3.100	148.68
N5-H5BO6	0.890	2.370	2.947	122.71
N6-H6DO9	0.890	2.272	3.093	153.33
N6-H6DO5	0.890	2.276	2.977	135.62
N6-H6EO5	0.890	2.222	2.977	142.46
N6-H6EO9	0.890	2.313	3.093	146.34

Table S2. Hydrogen bond lengths (Å) and angles (°) for SU-79