Electronic Supporting Information

Oxidovanadium(IV), Oxidomolybdenum(VI) and Cobalt(III)

Complexes of o-Phenylenediamine Derivatives: Oxidative

 Dehydrogenation and PhotoluminescenceSatyabrata Chaudhuri, ${ }^{\dagger}$ Sachinath Bera, ${ }^{\dagger}$ Manas Kumar Biswas, ${ }^{\dagger}$ Amit Saha Roy, ${ }^{\dagger}$ Thomas Weyhermüller, ${ }^{*}$ and Prasanta Ghosh ${ }^{*}{ }^{\dagger}$
${ }^{\dagger}$ Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata-103, India
${ }^{*}$ Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36 / D-45470 Mülheim an der Ruhr, Germany

* To whom corresponding should be addressed. Email: ghosh@pghosh.in

Content

	Page
UV-vis/NIR absorption spectra of $\mathrm{L}_{3} \mathrm{H}_{2}, \mathrm{~L}_{3}{ }^{\text {t- }}{ }^{\text {u }} \mathrm{H}_{2}, 3,4,5$ and 6 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 298 K	3
Cyclic voltammogram of 3 in $\mathrm{CH}_{\mathbf{2}} \mathrm{Cl}_{2}$ at 298 K	3
X-band EPR spectra of (a) 3 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 298 K (b) frozen $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ glass of 3 at 25 K (c) 4 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 298 K	4
Fluorescence spectra of 5 and 6 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 298 K	5
Photoactive molecular orbitals	5
Schematic diagram of the ligand fragmentation considered in MO analyses	6
Calculated bond lengths ($\left(\mathbf{\AA}\right.$) of $3,3^{+}$and 6	6
Excitation energies (λ / nm), oscillator strengths (\mathbf{f}), transition types, and dominant contributions of UV-vis/NIR absorption bands of 6,3 and 3^{+}obtained from TD DFT calculations	7
Population analyses of selected molecular orbitals of 6,3 and 3^{+}	8
Optimized coordinates of 3, $\mathbf{3}^{+}$and 6	9

Fig. S1 UV-vis/NIR absorption spectra of (a) $L_{3} \mathrm{H}_{2}$ (black) and $\mathrm{L}_{3}{ }^{\mathrm{t} \text {-Bu }} \mathrm{H}_{2}$ (red) (b) $\mathbf{3}$ (red) and 4 (black) (c) 5 and (d) 6 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 298 K.

Fig. S2 Cyclic voltammogram of $\mathbf{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 298 K . Conditions: $0.2 \mathrm{M}\left[\mathrm{N}(n-\mathrm{Bu})_{4}\right] \mathrm{PF}_{6}$ supporting electrolyte; scan rate $100 \mathrm{mVs}^{-1}$; platinum working electrode.

Fig. S3 X-band EPR spectra of (a) $\mathbf{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 298 K (b) frozen $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ glass of $\mathbf{3}$ at 25 K (c) 4 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 298 K (black, experimental spectra; red, simulated spectra).

Fig. S4 Fluorescence spectra of (a) 5 and (b) $\mathbf{6}$ (black, excitation spectra; red, emission spectra) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 298 K .

Scheme S1 Photoactive molecular orbitals (EM = Emission; NRD = Non-radiative decay)

Fig. S5 Schematic diagram of the ligand fragmentation considered in MO analyses (Table S3).
Table S1 Calculated bond lengths (\AA) of $\mathbf{3}, \mathbf{3}^{+}$and 6 (Fig. S5)

	$\mathbf{3}(\mathbf{M}=\mathbf{V})$	$\mathbf{3}^{+}(\mathbf{M}=\mathbf{V})$	$\mathbf{6}(\mathbf{M}=\mathbf{C o})$
$\mathrm{M}-\mathrm{N}(7)$	2.066	2.062	1.896
$\mathrm{M}-\mathrm{N}(4)$	1.968	1.919	1.916
$\mathrm{M}-\mathrm{N}(1)$	2.110	2.052	1.945
$\mathrm{M}-\mathrm{O}(11)$	1.923	1.794	1.888
$\mathrm{~N}(4)-\mathrm{C}(3)$	1.448	1.465	1.299
$\mathrm{C}(3)-\mathrm{C}(2)$	1.530	1.513	1.476
$\mathrm{C}(2)-\mathrm{N}(1)$	1.348	1.349	1.355
$\mathrm{~N}(16)-\mathrm{C}(15)$	1.381	1.393	1.406
$\mathrm{C}(5)-\mathrm{C}(6)$	1.428	1.416	1.423
$\mathrm{C}(6)-\mathrm{N}(7)$	1.414	1.407	1.404
$\mathrm{~N}(7)-\mathrm{C}(8)$	1.302	1.305	1.306
$\mathrm{C}(8)-\mathrm{C}(9)$	1.435	1.437	1.420
$\mathrm{C}(9)-\mathrm{C}(10)$	1.435	1.423	1.443
$\mathrm{C}(10)-\mathrm{O}(11)$	1.316	1.350	1.293
$\mathrm{M}-\mathrm{O}$ (Oxo)	1.599	1.580	-
$\mathrm{M}-\mathrm{Cl}(\mathrm{Avg})$.	-	-	2.306

Table S2 Excitation energies (λ / nm), oscillator strengths (f), transition types, and dominant contributions of UV-vis/NIR absorption bands of $\mathbf{6}, \mathbf{3}$ and $\mathbf{3}^{+}$obtained from TD DFT calculations

$\lambda_{\text {calc }} / \mathrm{nm}$	f	$\lambda_{\text {exp }}$	Significant contributions ($>10 \%$)	Transition types	Dominant contributions
6					
591.5	0.0394		$\mathrm{HOMO} \rightarrow$ LUMO (97\%)	$\pi_{\mathrm{NO}}(84) \rightarrow \pi_{\mathrm{NN}}{ }^{*}(92)$	LLCT
421.8	0.0891	423	$\begin{aligned} & \text { HOMO-1 } \rightarrow \text { LUMO (10\%) } \\ & \text { HOMO } \rightarrow \text { LUMO+2 (54\%) } \end{aligned}$	$\begin{aligned} & \pi_{\mathrm{NO}}(14)+\mathrm{p}_{\mathrm{Cl}}(76) \rightarrow \pi_{\mathrm{NN}}^{*}{ }^{*}(92) \\ & \pi_{\mathrm{NO}}(84) \rightarrow \pi_{\mathrm{NN}}^{*}(33)+\pi_{\mathrm{NO}}^{*}(65) \end{aligned}$	$\begin{aligned} & \hline \text { MLCILCT } \\ & \text { LLCT } \\ & \hline \end{aligned}$
412.2	0.0684		$\begin{aligned} & \text { HOMO-15 } \rightarrow \text { LUMO+3 (28\%) } \\ & \text { HOMO-10 } \rightarrow \text { LUMO+3 (11\%) } \\ & \text { HOMO-1 } \rightarrow \text { LUMO (20\%) } \\ & \text { HOMO } \rightarrow \text { LUMO }+2(25 \%) \end{aligned}$	$\begin{aligned} & \mathrm{d}_{\mathrm{Co}}(71)+\pi_{\mathrm{NO}}(18) \rightarrow \pi_{\mathrm{NN}}{ }^{*}(99) \\ & \pi_{\mathrm{NN}}(85)+\pi_{\mathrm{NO}}(11) \rightarrow \pi_{\mathrm{NN}}{ }^{*}(99) \\ & \pi_{\mathrm{NO}}(14)+\mathrm{p}_{\mathrm{Cl}}(76) \rightarrow \pi_{\mathrm{NN}}{ }^{*}(92) \\ & \pi_{\mathrm{NO}}(84) \rightarrow \pi_{\mathrm{NN}}{ }^{*}(33)+\pi_{\mathrm{NO}}{ }^{*}(65) \\ & \hline \end{aligned}$	MMLLCT LLCT MLCILCT LLCT
410.5	0.1537		$\begin{aligned} & \text { HOMO-15 } \rightarrow \text { LUMO }+3 \text { (15\%) } \\ & \text { HOMO-1 } \rightarrow \text { LUMO (} 59 \% \text {) } \end{aligned}$	$\begin{aligned} & \mathrm{d}_{\mathrm{Co}}(71)+\pi_{\mathrm{NO}}(18) \rightarrow \pi_{\mathrm{NN}}^{*}{ }^{*}(99) \\ & \pi_{\mathrm{NO}}(14)+\mathrm{p}_{\mathrm{Cl}}(76) \rightarrow \pi_{\mathrm{NN}}(92) \end{aligned}$	$\begin{aligned} & \hline \text { MMLLCT } \\ & \text { MLCILCT } \\ & \hline \end{aligned}$
396.4	0.0222		$\begin{aligned} & \text { HOMO-15 } \rightarrow \text { LUMO+1 (21\%) } \\ & \text { HOMO-10 } \rightarrow \text { LUMO+1 (24\%) } \end{aligned}$	$\begin{aligned} & \mathrm{d}_{\mathrm{Co}}(71)+\pi_{\mathrm{NO}}(18) \rightarrow \mathrm{d}_{\mathrm{Co}}(57)+\mathrm{p}_{\mathrm{Cl}}(33) \\ & \pi_{\mathrm{NN}}(85)+\pi_{\mathrm{NO}}(11) \rightarrow \mathrm{d}_{\mathrm{Co}}(57)+\mathrm{p}_{\mathrm{Cl}}(33) \\ & \hline \end{aligned}$	d-d LMCT
360.9	0.0131		HOMO-5 \rightarrow LUMO (72\%) HOMO-2 \rightarrow LUMO (11\%)	$\begin{aligned} & \mathrm{p}_{\mathrm{Cl}}(93) \rightarrow \pi_{\mathrm{NN}}^{*}{ }^{*}(92) \\ & \mathrm{p}_{\mathrm{Cl}}(82) \rightarrow \pi_{\mathrm{NN}}(92) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { CILCT } \\ & \text { CILCT } \\ & \hline \end{aligned}$
350.9	0.1472	352	$\begin{aligned} & \text { HOMO-6 } \rightarrow \text { LUMO (15\%) } \\ & \text { HOMO-5 } \rightarrow \text { LUMO (} 22 \%) \\ & \text { HOMO-2 } \rightarrow \text { LUMO (42\%) } \end{aligned}$	$\begin{aligned} & \pi_{\mathrm{NN}}(85)+\pi_{\mathrm{NO}^{*}}(12) \rightarrow \pi_{\mathrm{NN}}^{*}(92) \\ & \mathrm{p}_{\mathrm{Cl}}(93) \rightarrow \pi_{\mathrm{NN}}^{*}(92) \\ & \mathrm{p}_{\mathrm{Cl}}(82) \rightarrow \pi_{\mathrm{NN}}(92) \end{aligned}$	LLCT ClLCT CILCT
344.7	0.0759		$\begin{aligned} & \text { HOMO-8 } \rightarrow \text { LUMO+1 (20\%) } \\ & \text { HOMO-6 } \rightarrow \text { LUMO (51\%) } \end{aligned}$	$\begin{aligned} & \mathrm{d}_{\mathrm{Co}}(19)+\pi_{\mathrm{NN}}(19)+\pi_{\mathrm{NO}}(58) \rightarrow \mathrm{d}_{\mathrm{Co}}(57)+\mathrm{p}_{\mathrm{Cl}}(33) \\ & \pi_{\mathrm{NN}}(85)+\pi_{\mathrm{NO}}(12) \rightarrow \pi_{\mathrm{NN}}^{*}(92) \end{aligned}$	$\begin{aligned} & \hline \text { MMLMCT } \\ & \text { LLCT } \\ & \hline \end{aligned}$
341.4	0.0563		$\begin{aligned} & \text { HOMO-10 } \rightarrow \text { LUMO+1 (11\%) } \\ & \text { HOMO-8 } \rightarrow \text { LUMO+1 }(17 \%) \\ & \text { HOMO-7 } \rightarrow \text { LUMO+1 (21\%) } \\ & \text { HOMO } \rightarrow \text { LUMO+4 }(11 \%) \end{aligned}$	$\begin{aligned} & \pi_{\mathrm{NN}}(85)+\pi_{\mathrm{NO}}(11) \rightarrow \mathrm{d}_{\mathrm{Co}}(57)+\mathrm{p}_{\mathrm{Cl}}(33) \\ & \mathrm{d}_{\mathrm{Co}}(19)+\pi_{\mathrm{NN}}(19)+\pi_{\mathrm{NO}}(58) \rightarrow \mathrm{d}_{\mathrm{Co}}(57)+\mathrm{p}_{\mathrm{Cl}}(33) \\ & \mathrm{d}_{\mathrm{Co}}(15)+\mathrm{p}_{\mathrm{Cl}}(71) \rightarrow \mathrm{d}_{\mathrm{Co}}(57)+\mathrm{p}_{\mathrm{C}}(33) \\ & \pi_{\mathrm{NO}}(84) \rightarrow \mathrm{d}_{\mathrm{Co}}(51)+\pi_{\mathrm{NN}}{ }^{*}(35)+\pi_{\mathrm{NO}}{ }^{*}(14) \\ & \hline \end{aligned}$	LMCT MMLMCT d-d LMMLCT
336.8	0.0603	331	HOMO \rightarrow LUMO+4 (85\%)	$\pi_{\mathrm{NO}}(84) \rightarrow \mathrm{d}_{\mathrm{Co}}(51)+\pi_{\mathrm{NN}}{ }^{*}(35)+\pi_{\mathrm{NO}}{ }^{*}(14)$	LMMLCT
318.1	0.4507	303	HOMO-1 \rightarrow LUMO+2 (78\%)	$\pi_{\mathrm{NO}}(14)+\mathrm{p}_{\mathrm{Cl}}(76) \rightarrow \pi_{\mathrm{NN}}{ }^{*}(33)+\pi_{\mathrm{NO}}{ }^{*}(65)$	MLCILCT
3					
493.6	0.1329	496	$\begin{aligned} & \alpha \mathrm{HOMO} \rightarrow \text { LUMO (44\%) } \\ & \beta \mathrm{HOMO} \rightarrow \text { LUMO }(45 \%) \end{aligned}$	$\begin{aligned} & \pi_{\mathrm{NN}}(84) \rightarrow \pi_{\mathrm{NN}_{*}}{ }^{*}(18)+\pi_{\mathrm{NO}}{ }^{*}(75) \\ & \pi_{\mathrm{NN}}(84) \rightarrow \pi_{\mathrm{NN}}(18)+\pi_{\mathrm{NO}}(76) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LLCT } \\ & \text { LLCT } \\ & \hline \end{aligned}$
427.9	0.0124		$\begin{aligned} & \alpha \mathrm{HOMO}-2 \rightarrow \mathrm{LUMO}+8(16 \%) \\ & \beta \mathrm{HOMO} \rightarrow \mathrm{LUMO}+1(43 \%) \end{aligned}$	$\begin{aligned} & \mathrm{d}_{\mathrm{VO}}(73)+\pi_{\mathrm{NO}}(18) \rightarrow \mathrm{d}_{\mathrm{VO}}(18)+\pi_{\mathrm{NN}}^{*}(49)+\pi_{\mathrm{NO}}^{*}(32) \\ & \pi_{\mathrm{NN}}(84) \rightarrow \pi_{\mathrm{NN}}^{*}(92) \end{aligned}$	$\begin{aligned} & \text { MMLMMLCT } \\ & \text { LLCT } \end{aligned}$
424.1	0.0241		$\begin{aligned} & \alpha \mathrm{HOMO}-2 \rightarrow \mathrm{LUMO}+8(23 \%) \\ & \alpha \mathrm{HOMO} \rightarrow \mathrm{LUMO}+1(15 \%) \\ & \beta \mathrm{HOMO} \rightarrow \mathrm{LUMO}+1(20 \%) \end{aligned}$	$\begin{aligned} & \mathrm{d}_{\mathrm{VO}}(73)+\pi_{\mathrm{NO}}(18) \rightarrow \mathrm{d}_{\mathrm{VO}}(18)+\pi_{\mathrm{NN}}{ }^{*}(49)+\pi_{\mathrm{NO}}^{*}(32) \\ & \pi_{\mathrm{NN}}(84) \rightarrow \pi_{\mathrm{NN}}^{*}(90) \\ & \pi_{\mathrm{NN}}(84) \rightarrow \pi_{\mathrm{NN}}(92) \end{aligned}$	$\begin{aligned} & \text { MMLMMLCT } \\ & \text { LLCT } \\ & \text { LLCT } \\ & \hline \end{aligned}$
380.5	0.0493	386	$\begin{aligned} & \alpha \text { HOMO- } \rightarrow \text { LUMO (12\%) } \\ & \alpha \text { HOMO- } \rightarrow \text { LUMO (20\%) } \\ & \beta \text { HOMO- } 1 \rightarrow \text { LUMO (20\%) } \end{aligned}$	$\mathrm{d}_{\mathrm{VO}}(73)+\pi_{\mathrm{NO}}(18) \rightarrow \pi_{\mathrm{NN}^{*}}{ }^{*}(18)+\pi_{\mathrm{NO}}{ }^{*}(75)$ $\pi_{\mathrm{NN}}(14)+\pi_{\mathrm{NO}}(77) \rightarrow \pi_{\mathrm{NN}^{*}}{ }^{*}(18)+\pi_{\mathrm{NO}}{ }^{*}(75)$ $\pi_{\mathrm{NN}}(17)+\pi_{\mathrm{NO}}(81) \rightarrow \pi_{\mathrm{NN}}(18)+\pi_{\mathrm{NO}}(76)$	$\begin{aligned} & \hline \text { MMLLCT } \\ & \text { LLCT } \\ & \text { LLCT } \\ & \hline \end{aligned}$
375.9	0.0804		$\begin{aligned} & \alpha \text { HOMO- } \rightarrow \text { LUMO (14\%) } \\ & \alpha \text { HOMO-1 } \rightarrow \text { LUMO (21\%) } \\ & \beta \text { HOMO-1 } \rightarrow \text { LUMO (24\%) } \end{aligned}$	$\begin{aligned} & \mathrm{d}_{\mathrm{VO}}(73)+\pi_{\mathrm{NO}}(18) \rightarrow \pi_{\mathrm{NN}}{ }^{*}(18)+\pi_{\mathrm{NO}}{ }^{*}(75) \\ & \pi_{\mathrm{NN}}(14)+\pi_{\mathrm{NO}}(77) \rightarrow \pi_{\mathrm{NN}}{ }^{*}(18)+\pi_{\mathrm{NO}}^{*}(75) \\ & \pi_{\mathrm{NN}}(17)+\pi_{\mathrm{NO}}(81) \rightarrow \pi_{\mathrm{NN}}^{*}(18)+\pi_{\mathrm{NO}}{ }^{*}(76) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { MMLLCT } \\ & \text { LLCT } \\ & \text { LLCT } \\ & \hline \end{aligned}$
366.1	0.0181		$\begin{aligned} & \alpha \mathrm{HOMO} \rightarrow \mathrm{LUMO}+2(49 \%) \\ & \alpha \mathrm{HOMO} \rightarrow \mathrm{LUMO}+3(32 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & \pi_{\mathrm{NN}}(84) \rightarrow \pi_{\mathrm{NN}}{ }^{*}(98) \\ & \pi_{\mathrm{NN}}(84) \rightarrow \mathrm{d}_{\mathrm{VO}}(65)+\pi_{\mathrm{NN}}{ }^{*}(30) \end{aligned}$	LLCT LMMLCT
357.1	0.0114		$\begin{aligned} & \alpha \mathrm{HOMO} \rightarrow \mathrm{LUMO}+3(19 \%) \\ & \alpha \mathrm{HOMO} \rightarrow \mathrm{LUMO}+5(13 \%) \\ & \beta \mathrm{HOMO} \rightarrow \mathrm{LUMO}+3(13 \%) \end{aligned}$	$\begin{aligned} & \pi_{\mathrm{NN}}(84) \rightarrow \mathrm{d}_{\mathrm{VO}}(65)+\pi_{\mathrm{NN}_{*}^{*}}(30) \\ & \pi_{\mathrm{NN}}(84) \rightarrow \mathrm{d}_{\mathrm{VO}}(19)+\pi_{\mathrm{NN}_{*}}(77) \\ & \pi_{\mathrm{NN}}(84) \rightarrow \mathrm{d}_{\mathrm{VO}}(75)+\pi_{\mathrm{NN}}(19) \\ & \hline \end{aligned}$	LMMLCT LMMLCT LMMLCT
337.1	0.0121	327	$\begin{aligned} & \alpha \mathrm{HOMO} \rightarrow \mathrm{LUMO}+2(16 \%) \\ & \alpha \mathrm{HOMO} \rightarrow \mathrm{LUMO}+4(25 \%) \\ & \beta \mathrm{HOMO} \rightarrow \mathrm{LUMO}+3(20 \%) \end{aligned}$	$\begin{aligned} & \pi_{\mathrm{NN}}(84) \rightarrow \pi_{\mathrm{NN}}^{*}(98) \\ & \pi_{\mathrm{NN}}(84) \rightarrow \mathrm{d}_{\mathrm{VO}}(10)+\pi_{\mathrm{NN}_{*}}^{*}(89) \\ & \pi_{\mathrm{NN}}(84) \rightarrow \mathrm{d}_{\mathrm{VO}}(75)+\pi_{\mathrm{NN}}(19) \end{aligned}$	LLCT LMMLCT LMMLCT
316.7	0.1876	313	$\begin{aligned} & \alpha \text { HOMO- } \rightarrow \text { LUMO (39\%) } \\ & \beta \text { HOMO- } 2 \rightarrow \text { LUMO (} 42 \%) \end{aligned}$	$\begin{aligned} & \pi_{\mathrm{NN}}(50)+\pi_{\mathrm{NO}}(49) \rightarrow \pi_{\mathrm{NN}}^{*}{ }^{*}(18)+\pi_{\mathrm{NO}}^{*}{ }^{*}(75) \\ & \pi_{\mathrm{NN}}(51)+\pi_{\mathrm{NO}}(48) \rightarrow \pi_{\mathrm{NN}}(18)+\pi_{\mathrm{NO}}(76) \end{aligned}$	$\begin{aligned} & \hline \text { LLCT } \\ & \text { LLCT } \\ & \hline \end{aligned}$
308.8	0.0204	300	$\beta \mathrm{HOMO}-1 \rightarrow \mathrm{LUMO}+2$ (55\%)	$\pi_{\mathrm{NN}}(17)+\pi_{\mathrm{NO}}(81) \rightarrow \pi_{\mathrm{NN}}^{*}(93)$	LLCT
3^{+}					
640.9	0.0119		$\begin{aligned} & \text { HOMO-4 } \rightarrow \text { LUMO (11\%) } \\ & \text { HOMO-2 } \rightarrow \text { LUMO (} 83 \% \text {) } \end{aligned}$	$\begin{aligned} & \pi_{\mathrm{NN}}(21)+\pi_{\mathrm{NO}}(77) \rightarrow \mathrm{d}_{\mathrm{VO}}(80)+\pi_{\mathrm{NO}}^{*}(13) \\ & \pi_{\mathrm{NN}}(97) \rightarrow \mathrm{d}_{\mathrm{VO}}(80)+\pi_{\mathrm{NO}}(13) \end{aligned}$	LMMLCT LMMLCT
471.5	0.0764	491	HOMO \rightarrow LUMO+2 (80\%)	$\pi_{\mathrm{NN}}(80)+\pi_{\mathrm{NO}}(12) \rightarrow \mathrm{d}_{\mathrm{VO}}(10)+\pi_{\mathrm{NN}}{ }^{*}(26)+\pi_{\mathrm{NO}}{ }^{*}(64)$	LMMLCT

| $\boldsymbol{\lambda}_{\text {calc }} / \mathbf{n m}$ | \mathbf{f} | $\boldsymbol{\lambda}_{\text {exp }}$ | Significant Contributions
 $(>10 \%)$ | Transition Types |
| :--- | :--- | :--- | :--- | :--- | :--- |

LLCT = Ligand to Ligand Charge Transfer, MLCILCT = Mixed Ligand Chloride to Ligand Charge Transfer, MMLLCT = Mixed Metal Ligand to Ligand Charge Transfer, d-d = d-d Transition, CILCT = Chloride to Ligand Charge Transfer, MMLMCT = Mixed Metal Ligand to Metal Charge Transfer, LMCT = Ligand to Metal Charge Transfer, LMMLCT = Ligand to Mixed Metal Ligand Charge
Transfer, MMLMMLCT = Mixed Metal Ligand to Mixed Metal Ligand Charge Transfer

Table S3 Population analyses of selected molecular orbitals of $\mathbf{6 , 3}$ and $\mathbf{3}^{+}$

	$\mathbf{6}$				3								
MO	Co	NN	NO	VO		NN		NO		VO	NN	NO	
				α	β	α	β	α	β				
LUMO	1	92	6	7	5	18	18	75	76	80	7	13	
HOMO	2	9	84	7	6	84	84	9	9	8	80	12	
HOMO-1	4	6	14	9	3	14	17	77	81	2	58	41	
HOMO-2	8	3	6	73	1	9	51	18	48	0	97	2	
HOMO-3	8	27	44	1	0	50	95	49	5	0	98	2	
HOMO-4	6	2	0	1	0	94	100	5	0	3	21	77	
HOMO-5	2	7	0	0	2	100	39	0	60	0	31	69	
HOMO-6	2	85	12	2	28	40	26	59	47	2	93	5	
HOMO-7	15	8	6	33	4	49	67	18	29	5	93	1	
HOMO-8	19	19	58	12	15	55	76	33	10	6	80	15	
HOMO-9	1	60	39	12	69	68	21	20	10	9	88	3	
HOMO-10	4	85	11	66	24	22	69	11	7	15	32	53	
HOMO-11	1	89	10	22	45	67	22	10	33	4	95	1	
HOMO-12	38	36	23	41	34	19	47	40	19	11	51	38	
HOMO-13	52	36	8	19	37	58	41	22	22	3	77	20	
HOMO-14	14	75	9	43	26	38	67	19	7	5	47	48	
HOMO-15	71	9	18	29	22	63	17	8	61	4	83	13	

Table S4 Optimized coordinates of $\mathbf{3}$

$\mathbf{S l}$	$\mathbf{S y m b o l}$	\mathbf{X}	\mathbf{Y}	\mathbf{Z}	$\mathbf{S l}$	$\mathbf{S y m b o l}$	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
1	O	8.147164	4.124388	13.00194	26	C	8.690336	-0.98481	8.874736
2	C	8.001572	5.392101	12.67864	27	C	8.382123	-2.3409	8.731882
3	C	8.927784	6.337502	13.18016	28	C	7.564312	-2.96576	9.673843
4	C	8.840584	7.677888	12.84445	29	C	7.060919	-2.23614	10.75415
5	C	7.831554	8.143669	11.97977	30	H	9.709048	5.970464	13.83879
6	C	6.921945	7.239967	11.46586	31	H	9.565588	8.378326	13.25191
7	C	6.968513	5.864152	11.80179	32	H	7.772338	9.195693	11.7187
8	C	6.017899	4.985596	11.18224	33	H	6.139927	7.579367	10.78948
9	N	5.857557	3.725785	11.4709	34	H	5.412726	5.422217	10.38315
10	C	4.994388	2.848151	10.77434	35	H	3.67663	4.276108	9.836635
11	C	3.925232	3.225618	9.959822	36	H	2.309608	2.546198	8.708082
12	C	3.148761	2.252716	9.331441	37	H	2.843923	0.13838	9.042958
13	C	3.449106	0.90057	9.527371	38	H	4.719707	-0.54766	10.47673
14	C	4.507753	0.50689	10.34381	39	H	6.056212	-0.7039	12.58734
15	C	5.306569	1.471796	10.98915	40	H	8.531657	-2.03277	13.21985
16	N	6.382484	1.243532	11.82372	41	H	10.32311	-1.6574	14.91716
17	C	6.852454	-0.09347	12.12015	42	H	10.75617	0.682757	15.73134
18	C	7.97028	0.042354	13.15611	43	H	9.323059	2.539271	14.81264
19	C	8.725441	-1.04091	13.61313	44	H	8.417147	0.797796	10.06053
20	C	9.729961	-0.82401	14.55132	45	H	9.320803	-0.49063	8.140141
21	C	9.974987	0.473852	15.00829	46	H	8.771357	-2.90353	7.887611
22	C	9.189207	1.504997	14.51346	47	H	7.309553	-4.01685	9.565952
23	N	8.207974	1.285723	13.61887	48	H	6.409885	-2.72341	11.47812
24	C	7.370769	-0.87988	10.90681	49	V	6.80704	2.745641	13.0217
25	C	8.189391	-0.2592	9.954997	50	O	5.82714	2.861401	14.27981

Table S5 Optimized coordinates of $\mathbf{3}^{+}$

$\mathbf{S l}$	Symbol	\mathbf{X}	\mathbf{Y}	\mathbf{Z}	$\mathbf{S l}$	$\mathbf{S y m b o l}$	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
1	O	8.259827	4.00035	12.52	10	C	4.969604	2.811675	10.78159
2	C	8.11713	5.337422	12.39937	11	C	3.892789	3.164095	9.961542
3	C	9.123176	6.198078	12.84363	12	C	3.083213	2.16284	9.436345
4	C	8.974466	7.570627	12.66625	13	C	3.35792	0.817781	9.720863
5	C	7.838842	8.098245	12.03035	14	C	4.433123	0.456507	10.52748
6	C	6.850025	7.244578	11.57044	15	C	5.261989	1.455194	11.06607
7	C	6.956597	5.846451	11.75256	16	N	6.396953	1.25777	11.84922
8	C	5.943197	4.980592	11.21542	17	C	6.889146	-0.09956	12.09521
9	N	5.879513	3.689897	11.39748	18	C	7.937971	0.011369	13.18002

$\mathbf{S l}$	Symbol	\mathbf{X}	\mathbf{Y}	\mathbf{Z}	$\mathbf{S l}$	$\mathbf{S y m b o l}$	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
19	C	8.66092	-1.06782	13.68733	35	H	3.670644	4.204619	9.747028
20	C	9.569891	-0.85043	14.7179	36	H	2.235629	2.426274	8.812431
21	C	9.750153	0.44409	15.21965	37	H	2.72315	0.040596	9.306242
22	C	9.013175	1.477267	14.66723	38	H	4.633806	-0.59028	10.71859
23	N	8.129022	1.255383	13.66627	39	H	6.071935	-0.71712	12.50369
24	C	7.439492	-0.81343	10.85902	40	H	8.508723	-2.05628	13.26846
25	C	8.321345	-0.16153	9.987753	41	H	10.13543	-1.68066	15.12968
26	C	8.849038	-0.8387	8.889094	42	H	10.45046	0.648703	16.02164
27	C	8.506445	-2.17364	8.654384	43	H	9.112388	2.502416	15.00751
28	C	7.629311	-2.82847	9.519823	44	H	8.583981	0.878824	10.16146
29	C	7.095949	-2.14889	10.61749	45	H	9.527711	-0.32493	8.214409
30	H	10.00521	5.78064	13.31746	46	H	8.917723	-2.69814	7.797026
31	H	9.754018	8.238954	13.0193	47	H	7.352144	-3.8628	9.338653
32	H	7.740107	9.169936	11.89431	48	H	6.401922	-2.66	11.28244
33	H	5.973968	7.643006	11.06578	49	V	7.000071	2.77012	12.86396
34	H	5.186177	5.452797	10.58827	50	O	6.024254	3.215215	14.02371

Table S6 Optimized coordinates of 6

Sl	Symbol	\mathbf{X}	\mathbf{Y}	\mathbf{Z}	$\mathbf{S l}$	$\mathbf{S y m b o l}$	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
1	C	0.954017	1.826494	$8.8 \mathrm{E}-06$	21	C	-4.77126	-1.41164	$-2.1 \mathrm{E}-05$
2	C	-0.36361	2.363533	$9.1 \mathrm{E}-06$	22	C	-6.02764	-0.843	$-2.5 \mathrm{E}-05$
3	C	-0.5299	3.757791	$2.3 \mathrm{E}-06$	23	H	-7.1957	0.996462	$-2.1 \mathrm{E}-05$
4	C	0.5782	4.598736	$-5 \mathrm{E}-06$	24	H	-4.6401	-2.4895	$-2.7 \mathrm{E}-05$
5	C	1.874776	4.068228	$-6.3 \mathrm{E}-06$	25	H	-6.90288	-1.48913	$-3.5 \mathrm{E}-05$
6	C	2.06265	2.690243	$8 \mathrm{E}-07$	26	C	1.557309	-1.84149	$1.5 \mathrm{E}-06$
7	H	-1.52207	4.19447	$2.6 \mathrm{E}-06$	27	C	2.436875	-2.92727	$-5.8 \mathrm{E}-06$
8	H	0.430659	5.675297	$-1 \mathrm{E}-05$	28	C	1.907916	-4.21995	$-9.7 \mathrm{E}-06$
9	H	2.737283	4.72818	$-1.3 \mathrm{E}-05$	29	H	3.507774	-2.75948	$-8.5 \mathrm{E}-06$
10	H	3.066304	2.290482	$3 \mathrm{E}-07$	30	C	-0.29729	-3.26221	$2.8 \mathrm{E}-06$
11	N	-1.40961	1.427555	$1.33 \mathrm{E}-05$	31	C	0.524759	-4.39314	$-5.2 \mathrm{E}-06$
12	N	0.990136	0.421301	$1.54 \mathrm{E}-05$	32	H	2.572354	-5.07935	$-1.6 \mathrm{E}-05$
13	C	-2.67817	1.737325	0.000008	33	H	-1.38091	-3.31211	$6.4 \mathrm{E}-06$
14	H	-2.95269	2.792599	$9.6 \mathrm{E}-06$	34	H	0.078633	-5.38227	$-8.1 \mathrm{E}-06$
15	C	1.974981	-0.42567	$5.7 \mathrm{E}-06$	35	N	0.216418	-2.03493	$6.4 \mathrm{E}-06$
16	C	-3.76401	0.82164	$-8 \mathrm{E}-07$	36	O	-2.44446	-1.21239	$-5.3 \mathrm{E}-06$
17	C	-5.08126	1.365611	$-5.1 \mathrm{E}-06$	37	Co	-0.76226	-0.35436	$9.8 \mathrm{E}-06$
18	C	-3.58912	-0.61065	$-9.6 \mathrm{E}-06$	38	Cl	-0.70852	-0.35153	2.305328
19	C	-6.20017	0.563317	$-1.7 \mathrm{E}-05$	39	Cl	-0.70849	-0.35149	-2.30531
20	H	-5.18948	2.448848	$1.2 \mathrm{E}-06$	40	C	3.432489	-0.10461	$4 \mathrm{E}-07$

Sl	Symbol	\mathbf{X}	\mathbf{Y}	\mathbf{Z}	$\mathbf{S l}$	Symbol	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
41	C	4.124387	0.019604	1.214351	46	H	3.586632	-0.08212	-2.15361
42	C	4.124385	0.019568	-1.21436	47	C	6.183424	0.418591	$-9.4 \mathrm{E}-06$
43	C	5.496522	0.284172	1.210959	48	H	6.026861	0.384698	2.154162
44	H	3.586635	-0.08206	2.153607	49	H	6.026858	0.384635	-2.15418
45	C	5.496521	0.284136	-1.21097	50	H	7.250445	0.624964	$-1.3 \mathrm{E}-05$

$\propto E N D$

