Supporting information for

Synthesis, characterisation, water adsorption and proton conductivity of three Cd(II) based luminescent metal-organic frameworks

Srinivasulu Parshamoni, Himanshu Sekhar Jena, Suresh Sanda and Sanjit Konar*

Department of Chemistry, IISER Bhopal, Indore By-pass Road, Bhauri, District: Bhopal – 462066, Madhya Pradesh - India. Fax: +91-755-6692392; Tel: +91-755-6692339, E-mail: skonar@iiserb.ac.in

Figure S1. IR spectra of compounds 1-3.

Compound	v(OH)	v(COO) _{sym}	v(COO) _{asym}	Δν (v _{asym} - v _{sym})
1	3396	1385	1599	214
2	3376	1385	1605	220
3	3376	1392	1612	230

Table S1. Selected IR bands (cm⁻¹) for the compounds **1-3.**

Fig. S2 (a) Asymmetric unit of compound **1**, (b) asymmetric unit of compound **2**. Color code: carbon (light gray), hydrogen (gray), nitrogen (blue), oxygen (red) and cadmium (cyan).

Fig. S3 Pentagonal bipyramidal arrangement of Cd(II) atom in 1. Color code; same as in Fig. S2.

Fig. S4 View of the {4⁴.6²} *sql/Shubnikov tetragonal plane* net topology featuring a 4-connected uninodal net.

Fig. S5 TGA graph of Compound 1.

Fig. S7 TGA graph of Compound 3.

Fig. S8 Carbon dioxide adsorption isotherm of compound 1 at 195 K.

Fig. S9 Carbon dioxide adsorption isotherm of compound 2 at 195 K.

Fig. S10 Carbon dioxide adsorption isotherm of compound 3 at 195 K.

Fig. S11 Water vapour adsorption isotherm of compounds 2 at 298 K.

Fig. S12 Vapour adsorption isotherms of compound 1 at 298 K. MeOH (red) and EtOH (blue).

Fig. S13 Vapour adsorption isotherms of compound 2 at 298 K. MeOH (dark-yellow) and EtOH (navy-blue).

Fig. S14 Vapour adsorption isotherms of compound 3 at 298 K. MeOH (blue) and EtOH (red).

Fig. S15 Nyquist plot of compound 1 at 298 and 303 K, showing increasing trend of proton conductivity values.

Fig. S16 Nyquist plot of compound 2 at 298 and 303 K, showing increasing trend of proton conductivity values.

Fig. S17 Nyquist plot of compound **3** at 298 and 303 K, showing increasing trend of proton conductivity values.

Fig. S18 PXRD pattern of compound **1** and **2**, (a) As synthesized (b) humidified for 24 h at 298 K, (c) humidified for 24 h at 358 K.

Fig. S19 PXRD pattern of compound **2**, (a) As synthesized (b) humidified for 24 h at 298 K, (c) humidified for 24 h at 358 K.

Fig. S20 PXRD pattern of compound **3**, (a) As synthesized (b) humidified for 24 h at 298 K, (c) humidified for 24 h at 353 K.

Fig. S21 Thermal Gravimetric Analysis curve for humidified compound **1** at different temperature (at 298 K (navy-blue), at 358 K (red)) in comparison with as-synthesized (green).

Fig. S22 Thermal Gravimetric Analysis curve for humidified compound **2** at different temperature (at 298 K (red), at 358 K (green)) in comparison with as-synthesized (navy-blue).

Fig. S23 Thermal Gravimetric Analysis curve for humidified compound **3** at different temperature (at 298 K (red), at 358 K (cyan)) in comparison with as-synthesized (blue).

Fig. S24 Arrhenius plot of activation energy for compound 2 showing activation energy (E_a) value of 0.67 eV.

Fig. S25 Arrhenius plot of activation energy for compound 3 showing activation energy (E_a) value of 0.71 eV.

Donor-H···Acceptor	D – H (Å)	HA(Å)	DA (Å)	D - HA (°)
04-H4 O3 ^a	0.820(8)	2.753(4)	3.221(8)	115
$C1-H1\cdots O2^{a}$	0.930(8)	2.684(5)	3.338(1)	125
C13-H13…O6 ^a	0.980(5)	2.588(7)	2.824(7)	91
C14-H14O3 ^a	0.980(7)	2.548(.003)	2.858(.007)	96
C15-H6A…O7 ^b	1.612(7)	2.354(4)	3.268(6)	120
O6-H6A…O2 ^b	0.820(8)	2.054(3)	2.772(11)	143
$C1-H1\cdots O5^{b}$	0.930(8)	2.841(13)	3.632(15)	141
O6-H6A····O7 ^b	0.820(8)	2.354(4)	2.962(.9)	129
$C15-H6A\cdotsO2^{b}$	1.612(7)	2.054(3)	3.373(6)	142
C10-H10····O4 ^c	0.930(7)	2.776(7)	3.478(11)	130
$C5-H5\cdots O3^{c}$	0.930(9)	2.496(4)	3.154(11)	125
C10-H10O3 ^c	0.930(7)	2.718(4)	3.394(8)	127
$C14-H14\cdots O7^{d}$	0.980(7)	2.897(3)	3.743(7)	143

Table S2. H-bonding table for compound 1.

Equivalent positions:

(a) x,y,z, (b) -x,-y+2,+z, (c) -x+1/2,+y+1/2,-z+1, (d) x,+y-1,+z

Donor-H···Acceptor	D – H (Å)	HA(Å)	DA (Å)	D - HA (°)
O5-H5…O1 ^a	0.820(9)	2.759(4)	3.226(10)	115.71
C1-H1····O3 ^a	0.930(1)	2.974(7)	3.485(14)	113.46
$C10-H10\cdots O4^{a}$	0.930(9)	2.697(6)	3.335(12)	123.86
C12-H12····O7 ^a	0.980(6)	2.546(8)	2.817(9)	93.43
C13-H13…O1 ^a	0.980(9)	2.559(4)	2.862(9)	95.59
$C5-H5A\cdotsO1^{b}$	0.930(8)	2.731(5)	3.403(8)	127.35
C5-H5A…O5 ^b	0.930(8)	2.772(9)	3.487(12)	132.07
$C9-H9\cdotsO1^{b}$	0.930(11)	2.507(5)	3.161(12)	124.70
C10-H10····O6 ^c	0.930(9)	2.767(15)	3.603(17)	148.50
$O7-H7\cdots O4^{c}$	0.820(12)	1.966(4)	2.778(14)	169.81
07-H7…O3 ^с	0.820(12)	2.593(4)	2.981(11)	108.08
О7-Н7…О7с	0.820(12)	2.979(6)	3.143(5)	91.66
C13-H13····O3 ^d	0.980(9)	2.895(4)	3.738(9)	143.48

Table S3. H-bonding table for compound 2.

Equivalent positions:

(a) x,y,z. (b) -x+1/2,+y+1/2,-z. (c) -x,-y+2,+z. (d) x,+y-1,+z.

Table S4. Humidity sweep impedance measurement at constant temperature (298 K).

Humidity (%)	Compound 1	Compound 2	Compound 3
35% RH	5.7 x 10 ⁻¹¹	5.7 x 10 ⁻¹¹	2.3 x 10 ⁻¹¹
50% RH	5.7 x 10 ⁻¹¹	5.9 x 10 ⁻¹¹	2.5 x 10 ⁻¹¹
65% RH	9.2 x 10 ⁻¹¹	8.4 x 10 ⁻¹¹	2.6 x 10 ⁻¹¹
80% RH	1.2 x 10 ⁻¹⁰	1.7 x 10 ⁻¹⁰	8.3 x 10 ⁻¹¹
95% RH	5.0 x 10 ⁻¹⁰	5.2 x 10 ⁻¹⁰	1.3 x 10 ⁻¹⁰

Cor	npound 1	Comj	pound 2
Cd1 -O1	2.309(3)	Cd1-O2	2.310(4)
Cd1-O2	2.411(3)	Cd1-O4	2.405(4)
Cd1-07	2.265(4)	Cd1-N1	2.324(5)
Cd1-N2	2.316(5)	Cd1-O3	2.264(4)
Cd1-O1A	2.495(3)	Cd1-O2	2.495(4)
Cd1-N1	2.325(5)	Cd1-N2	2.316(6)
Cd1-O3 O1-Cd1-O2	2.414(3) 67 5(1)	Cd1-O1 O1-Cd1-O2	2.411(4) 53 2(1)
01-Cd1-07	144.5(2)	02-Cd1-O4	67.6(1)
01-Cd1-N2	93.3(2)	O2-Cd1-N1	84.0(2)
O1-Cd1-O1	133.4(1)	O2-Cd1-O3	144.3(2)
O1-Cd1-O3	82.6(1)	O2-Cd1-O1	82.5(1)
O1-Cd1-N1	84.1(1)	O2-Cd1-O2	133.2(1)
O2-Cd1-O7	77.1(2)	O2-Cd1-N2	93.4(2)
O2-Cd1-N2	90.3(2)	O4-Cd1-N1	90.4(2)
O2-Cd1-O1	157.2(1)	O4-Cd1-O3	76.9(2)
O2-Cd1-O3	149.5(1)	O4-Cd1-O1	149.4(1)
O2-Cd1-N1	90.3(2)	O4-Cd1-O2	157.3(1)
O7-Cd1-N2	90.2(2)	O4-Cd1-N2	90.0(2)
O7-Cd1-O1	81.1(1)	N1-Cd1-O3	92.3(2)
O7-Cd1-O3	133.0(1)	N1-Cd1-O1	92.8(2)
O7-Cd1-N1	92.9(2)	N1-Cd1-O2	84.1(2)
N2-Cd1-O1	96.5(1)	N1-Cd1-N2	177.1(2)
N2-Cd1-O3	85.4(2)	O3-Cd1-O1	133.3(2)
N2-Cd1-N1	176.9(2)	O3-Cd1-O2	81.3(2)
O1-Cd1-O3	53.2(1)	O3-Cd1-N2	90.6(2)
O1-Cd1-N1	84.1(1)	O1-Cd1-N2	85.4(2)
O3-Cd1-N1	92.5(1)	O2-Cd1-N2	96.7(2)

Table S5. Selected bond lengths (Å) and bond angles (°) of compounds 1 and 2.