Synthesis, Polymorphism, and Electronic Structures of Sr₃Sn₂As₄

Xiao-Cun Liu, Ming-Yan Pan, Xin Li, Sheng-Qing Xia,* and Xu-Tang Tao

State Key Laboratory of Crystal Materials, Institute of Crystal Materials,

Shandong University, Jinan, Shandong 250100, People's Republic of China

Supporting Information

Contents

Figure S1. TG-DSC measurements on (a) α -Sr₃Sn₂As₄ and (b) β -Sr₃Sn₂As₄, conducted in an inert atmosphere of argon.

Figure S2. The TG-DSC curves of 2^{nd} cycle for α -Sr₃Sn₂As₄.

Figure S3. Experimental (red) and simulated (black) X-ray powder di raction data of (a) α and (b)

 β -Sr₃Sn₂As₄.

Figure S4. Optical absorption spectrum measured on polycrystalline samples of α-Sr₃Sn₂As₄ and

 β -Sr₃Sn₂As₄.

Fig. S5. Tauc plots for (a) α and (b) β -Sr₃Sn₂As₄ at room temperature. The linear fits of $(\alpha hv/S)^{1/2}$ and $(\alpha hv/S)^2$ vs *hv* plots are used for the calculation of indirect and direct band gaps, respectively.

Table S1. Refined atomic coordinates and isotropic displacement parameters for two polymorphs of

 $Sr_3Sn_2As_4$.

Table S2. The selected important interatomic distances (Å) in two polymorphs of Sr₃Sn₂As₄

Figure S1. TG-DSC measurements on (a) α -Sr₃Sn₂As₄ and (b) β -Sr₃Sn₂As₄, conducted in an inert atmosphere of argon.

Figure S2. The 2^{nd} cycle of TG-DSC curves for α -Sr₃Sn₂As₄.

Figure S3. Experimental (blue) and simulated (red) X-ray powderdi raction data of (a) α and (b) β -Sr₃Sn₂As₄.

Fig. S4. Optical absorption spectrum measured on polycrystalline samples of α -Sr₃Sn₂As₄ and β -Sr₃Sn₂As₄.

Fig. S5. Tauc plots for (a) α and (b) β -Sr₃Sn₂As₄ at room temperature. The linear fits of $(\alpha hv/S)^{1/2}$ and $(\alpha hv/S)^2$ vs hv plots are used for the calculation of indirect and direct band gaps, respectively.

Atoms	Wyckoff site	x	у	Z	$Ueq(\AA^2)$
α -Sr ₃ Sn ₂ As ₄					
Sr1	16g	0.08386(3)	0.28712(7)	0.13070(4)	0.01087(18)
Sr2	16g	0.16857(3)	0.04676(7)	0.25739(4)	0.01059(18)
Sr3	16g	0.25560(3)	0.28834(7)	0.12717(4)	0.01242(19)
Sr4	8f	0	0.05958(10)	0.27092(6)	0.0117(3)
Sr5	8 <i>d</i>	0.32523(4)	0	0	0.0107(3)
Sr6	<i>4b</i>	1/2	0	0	0.0089(3)
Sr7	4a	0	0	0	0.0151(4)
Sn1	16g	0.08543(2)	0.34615(5)	0.32211(3)	0.00896(14)
Sn2	16g	0.16206(2)	0.06286(5)	0.05956(3)	0.00878(14)
Sn3	16g	0.41779(2)	0.20947(5)	0.06648(3)	0.00883(14)
As1	16g	0.07605(3)	0.03920(8)	0.13393(4)	0.0107(2)
As2	16g	0.08743(4)	0.02573(7)	0.38306(4)	0.01018(19)
As3	16g	0.16529(4)	0.29709(8)	0.24765(5)	0.01046(19)
As4	16g	0.16645(4)	0.25313(7)	0.00822(5)	0.0102(2)
As5	16g	0.24690(3)	0.03843(8)	0.12620(4)	0.0102(2)
As6	8f	0	0.24804(10)	0.01211(6)	0.0093(3)

Table S1. Refined atomic coordinates and isotropic displacement parameters for two polymorphs of $Sr_3Sn_2As_4$.

As7	8f	0	0.30939(11)	0.24880(6)	0.0102(3)
β -Sr ₃ Sn ₂ As ₄					
Sr1	4e	0.21062(11)	0.81719(4)	0.00999(11)	0.01116(17)
Sr2	4e	0.25910(10)	0.56067(4)	0.01154(10)	0.01029(17)
Sr3	4e	0.26307(11)	0.06093(4)	0.00586(10)	0.01097(17)
Sn1	4e	0.20769(8)	0.37681(3)	0.02819(8)	0.01473(15)
Sn2	4e	0.32032(7)	0.24274(3)	0.41053(7)	0.00972(14)
As1	4e	0.00169(12)	0.55548(4)	0.25618(11)	0.01207(18)
As2	4e	0.02632(12)	0.31749(4)	0.21937(12)	0.01115(18)
As3	4e	0.50580(11)	0.43522(4)	0.25118(11)	0.01124(18)
As4	4e	0.52427(12)	0.19502(4)	0.22712(11)	0.00969(17)

^{*a*} U_{eq} is defined as one third of the trace of the orthogonalized U^{*ij*} tensor

Atom pairs	Distances (Å)	Atom pairs	Distances (Å)
α -Sr ₃ Sn ₂ As ₄			
Sr1 – As1	3.2022(14)	Sr2 – As1	3.3586(12)
As2	3.0879(13)	As2	3.1985(12)
As3	3.0713(12)	As3	3.2204(14)
As4	3.1968(12)	As3	3.2328(14)
As6	3.1745(12)	As5	3.1183(12)
As7	3.1407(12)	As5	3.2234(12)
Sr3 – As3	3.1479(12)	$Sr4 - As1 \times 2$	3.2835(13)
As3	3.2786(13)	As2×2	3.1427(12)
As4	3.2665(12)	As7	3.2466(19)
As4	3.3217(13)	As7	3.2472(19)
As5×2	3.2289(14)	$Sr6 - As2 \times 4$	3.1936(9)
Sr5 – As2×2	3.1920(12)	As6×2	3.2556(14)
As4×2	3.1928(10)	Sr7 – As1×4	3.2659(9)
As5×2	3.1865(11)	As6×2	3.2052(14)
Sn1 – Sn3	2.7659(9)	Sn2 - Sn2	2.7955(12)
As1	2.6374(12)	As1	2.6531(10)
As3	2.5830(11)	As4	2.6440(12)
As7	2.6547(9)	As5	2.5523(10)
Sn3 – As2	2.5608(11)		
As4	2.6451(11)		

Table S2. Important interatomic distances ((Å) in two polymorphs of S	$Sr_3Sn_2As_4$
---	----------------------------	----------------

Ase	2.6563(9)		
β -Sr ₃ Sn ₂ As ₄			
Sr1 – As1	3.1577(12)	Sr2 – As1	3.1790(12)
As2	3.2416(12)	As1	3.2055(12)
As2	3.2649(12)	As2	3.2385(12)
As3	3.1987(12)	As3	3.1793(11)
As4	3.2155(11)	As3	3.1836(12)
As4	3.2585(12)	As4	3.3026(11)
Sr3 – As1	3.1300(12)	Sn1 - Sn2	2.7173(9)
As1	3.2118(12)	As1	2.5327(11)
As2	3.2512(12)	As2	2.6340(11)
As3	3.1533(12)	As3	2.5517(10)
As3	3.1748(11)	Sn2 – As2	2.6151(10)
As4	3.3091(12)	As4	2.6350(10)
		As4	2.6362(10)