Electronic Supplementary Information

Molecular recognition of Ca²⁺ cations by internal and external receptors/interfaces in a spherical porous molybdenum-oxide capsule: unusual coordination scenarios

Mirta Rubčić, Vladimir S. Korenev, Liviu Toma, Hartmut Bögge, Vladimir P. Fedin and Achim Müller*

I) Vibrational Spectroscopy

Of the four normal vibration modes of the free SO_4^{2-} anion, spanning the irreducible representation $A_1 + E + 2F_2$ according to its T_d symmetry, only the two triply degenerate modes $v_3(F_2)$ and $v_4(F_2)$ are IR active and appear at ca. 1104 cm⁻¹ and 613 cm⁻¹, respectively.^{1a} Upon coordination, the symmetry of the SO_4^{2-} anion is lowered causing the splitting of the degenerate vibrations and a change in the selection rules. In the case of cluster **1a** the symmetry of the coordinated SO_4^{2-} anion is C_{2v} in accordance with its bridging bidentate coordination and all four vibration modes are expected to appear in the IR spectrum of **1** while the v_3 mode which appears as a characteristic 1192/1138/1040 cm⁻¹ triplet.

Fig. S1 IR spectra (KBr pellets) of a) 1, and b) 2 in the 2000–400 cm⁻¹ spectral region. The bands assigned to the $v_{as}(SO_4)$ mode, in both a) and b), are indicated by arrows.

II) Further Structural Information: Water in the Pores

As the detailed description is very difficult in the present case because of disordered SO_4^{2-} ligands we avoid to refer to it. Anyhow the interesting situation of water guests in the pores is precedented (see, e.g., the interesting butyrate capsule; for details see SI of Ref. 2).

Fig. S2 The side view of the extended pore channel segment showing the coordination environment of the confined Ca²⁺ cation (cyan sphere) spanned by the O-atoms of the sulphate ligands (yellow tetrahedra), pore channel water (enlarged red sphere) and three oxygen atoms belonging to three (H₂O)₅ pentagons (yellow) of the Ca₂₀{H₂O}₆₀ \equiv Ca₂₀{(H₂O)₅}₁₂ "water assembly". Other colour codes: Mo blue, O red, S yellow.

References

- K. Nakamoto, *Infrared and Raman Spectra of Inorganic and Coordination Compounds*, 4th ed., Wiley, New York, 1986, Part II, pp. 139; Part III, pp. 248–251.
- 2 C. Schäffer, H. Bögge, A. Merca, I. A. Weinstock, D. Rehder, E. T. K. Haupt and A. Müller, *Angew. Chem., Int. Ed.* 2009, **48**, 8051-8056 (see Supporting Information).