## A Series of Novel Mercury(I) Selenites and Tellurites Containing SOJT Mo<sup>6+</sup> Cations

Xue-Li Cao, Fang Kong, Chun-Li Hu, and Jiang-Gao Mao\*

## **Supporting Information**

- Table S1. IR data for Hg<sub>2</sub>MoSeO<sub>6</sub>,  $\beta$ -Hg<sub>2</sub>MoTeO<sub>6</sub> and Hg<sub>2</sub>Mo<sub>2</sub>TeO<sub>9</sub>.
- Table S2. The state energies (eV) of the lowest conduction band (L-CB) and the highest valence band (H-VB) of Hg<sub>2</sub>MoSeO<sub>6</sub>,  $\alpha$ -Hg<sub>2</sub>MoTeO<sub>6</sub>,  $\beta$ -Hg<sub>2</sub>MoTeO<sub>6</sub> and Hg<sub>2</sub>Mo<sub>2</sub>TeO<sub>9</sub>.
- Figure S1. Simulated and experimental XRD powder patterns of Hg<sub>2</sub>MoSeO<sub>6</sub> (a),  $\beta$ -Hg<sub>2</sub>MoTeO<sub>6</sub> (b) and Hg<sub>2</sub>Mo<sub>2</sub>TeO<sub>9</sub> (c).
- Figure S2. The coordination geometries around Hg<sup>+</sup> cations (a) and the coordination mode of the tellurite group (b) in  $\alpha$ -Hg<sub>2</sub>MoTeO<sub>6</sub>.
- Figure S3. The coordination geometries around Hg<sup>+</sup> cations (a) and the coordination mode of the tellurite group (b) in  $\beta$ -Hg<sub>2</sub>MoTeO<sub>6</sub>.
- Figure S4. The coordination geometries around Hg<sup>+</sup> cations (a) and the coordination mode of the tellurite group (b) in Hg<sub>2</sub>Mo<sub>2</sub>TeO<sub>9</sub>.

Figure S5. TGA and DSC curves of Hg<sub>2</sub>MoSeO<sub>6</sub> (a),  $\beta$ -Hg<sub>2</sub>MoTeO<sub>6</sub> (b) and

 $Hg_2Mo_2TeO_9$  (c).

Figure S6. IR spectra of Hg<sub>2</sub>MoSeO<sub>6</sub> (a),  $\beta$ -Hg<sub>2</sub>MoTeO<sub>6</sub> (b) and Hg<sub>2</sub>Mo<sub>2</sub>TeO<sub>9</sub> (c).

Figure S7. Optical diffuse reflectance spectra of Hg<sub>2</sub>MoSeO<sub>6</sub> (a),  $\beta$ -Hg<sub>2</sub>MoTeO<sub>6</sub> (b) and

 $Hg_2Mo_2TeO_9$  (c).

|                                                  | v(Mo-O)            | v(Te(Se)-O)   | v(Mo-O-Te(Se))     |
|--------------------------------------------------|--------------------|---------------|--------------------|
| Hg <sub>2</sub> MoSeO <sub>6</sub>               | 926, 919, 852, 799 | 710           | 565, 514, 476, 434 |
| β-Hg <sub>2</sub> MoTeO <sub>6</sub>             | 902, 890, 835, 802 | 772, 743, 670 | 630, 488, 432      |
| Hg <sub>2</sub> Mo <sub>2</sub> TeO <sub>9</sub> | 916, 865, 838      | 719, 651      | 580, 538, 465      |

Table S1. IR data for  $Hg_2MoSeO_6$ ,  $\beta$ - $Hg_2MoTeO_6$  and  $Hg_2Mo_2TeO_9$ .

Table S2. The state energies (eV) of the lowest conduction band (L-CB) and the highest

| Compound                                     | k-point                  | L-CB    | H-VB     |
|----------------------------------------------|--------------------------|---------|----------|
|                                              | G (0.000, 0.000, 0.000)  | 2.37967 | -0.22391 |
|                                              | Z (0.000, 0.000, 0.500)  | 2.09588 | -0.22611 |
| Ha MaSaO                                     | T (-0.500, 0.000, 0.500) | 2.05515 | -0.0151  |
|                                              | Y (-0.500, 0.000, 0.000) | 2.00846 | -0.22226 |
| ng21005eO6                                   | S (-0.500, 0.500, 0.000) | 2.10684 | -0.20726 |
|                                              | X (0.000, 0.500, 0.000)  | 2.41997 | -0.3026  |
|                                              | U (0.000, 0.500, 0.500)  | 2.10284 | -0.24112 |
|                                              | R (-0.500, 0.500, 0.500) | 2.05513 | -0.08394 |
|                                              | G (0.000, 0.000, 0.000)  | 2.23388 | -0.17412 |
|                                              | Z (0.000, 0.000, 0.500)  | 1.90561 | -0.22908 |
|                                              | T (-0.500, 0.000, 0.500) | 1.95669 | -0.01492 |
|                                              | Y (-0.500, 0.000, 0.000) | 1.97193 | -0.12817 |
| $\alpha$ -Hg <sub>2</sub> MOTeO <sub>6</sub> | S (-0.500, 0.500, 0.000) | 2.07563 | -0.11001 |
|                                              | X (0.000, 0.500, 0.000)  | 2.26734 | -0.20701 |
|                                              | U (0.000, 0.500, 0.500)  | 1.9297  | -0.25045 |
|                                              | R (-0.500, 0.500, 0.500) | 1.95764 | -0.0552  |
|                                              | G (0.000, 0.000, 0.000)  | 2.37232 | 0        |
|                                              | Z (0.000, 0.000, 0.500)  | 2.37061 | -0.1893  |
|                                              | T (-0.500, 0.000, 0.500) | 2.39828 | -0.16734 |
|                                              | Y (-0.500, 0.000, 0.000) | 2.39235 | -0.10826 |
| p-Hg <sub>2</sub> MoreO <sub>6</sub>         | S (-0.500, 0.500, 0.000) | 2.45    | -0.30942 |
|                                              | X (0.000, 0.500, 0.000)  | 2.42851 | -0.17048 |
|                                              | U (0.000, 0.500, 0.500)  | 2.45738 | -0.24798 |
|                                              | R (-0.500, 0.500, 0.500) | 2.46164 | -0.36117 |
|                                              | Z (0.000, 0.000, 0.500)  | 1.94429 | -0.38463 |
|                                              | G (0.000, 0.000, 0.000)  | 1.95989 | -0.31202 |
|                                              | Y (0.000, 0.500, 0.000)  | 1.95281 | -0.40158 |
|                                              | A (-0.500, 0.500, 0.000) | 2.00094 | -0.2354  |
| ng21v1021eO9                                 | B (-0.500, 0.000, 0.000) | 1.92089 | 0        |
|                                              | D (-0.500, 0.000, 0.500) | 1.95858 | -0.15148 |
|                                              | E (-0.500, 0.500, 0.500) | 1.9605  | -0.23011 |
|                                              | C (0.000, 0.500, 0.500)  | 1.94002 | -0.44692 |

valence band (H-VB) of four compounds



Figure S1. Simulated and experimental XRD powder patterns of  $Hg_2MoSeO_6$  (a),  $\beta$ - $Hg_2MoTeO_6$  (b) and  $Hg_2Mo_2TeO_9$  (c).



Figure S2. The coordination environment around the Hg<sup>+</sup> cation (a) and the coordination mode of the tellurite group (b) in  $\alpha$ -Hg<sub>2</sub>MoTeO<sub>6</sub>.



Figure S3. The coordination geometries around Hg<sup>+</sup> cations (a) and the coordination mode of the tellurite group (b) in  $\beta$ -Hg<sub>2</sub>MoTeO<sub>6</sub>.



Figure S4. The coordination geometries around Hg<sup>+</sup> cations (a) and the coordination mode of the tellurite group (b) in Hg<sub>2</sub>Mo<sub>2</sub>TeO<sub>9</sub>.



Figure S5. TGA and DSC curves of Hg<sub>2</sub>MoSeO<sub>6</sub> (a),  $\beta$ -Hg<sub>2</sub>MoTeO<sub>6</sub> (b) and Hg<sub>2</sub>Mo<sub>2</sub>TeO<sub>9</sub> (c).



Figure S6. IR spectra of Hg<sub>2</sub>MoSeO<sub>6</sub> (a),  $\beta$ -Hg<sub>2</sub>MoTeO<sub>6</sub> (b) and Hg<sub>2</sub>Mo<sub>2</sub>TeO<sub>9</sub> (c).



Figure S7. Optical diffuse reflectance spectra of Hg<sub>2</sub>MoSeO<sub>6</sub> (a),  $\beta$ -Hg<sub>2</sub>MoTeO<sub>6</sub> (b) and Hg<sub>2</sub>Mo<sub>2</sub>TeO<sub>9</sub> (c).