Supplementary Information

Two New Members of the Niobium-substituted Polytungstophosphate Family Based on Hexalacunary $[H_2P_2W_{12}O_{48}]^{12}$ - Building Block

Dongdi Zhang,^a Chao Zhang,^b Pengtao Ma,^a Bassem S. Bassil,^{c,d} Rami Al-Oweini,^{c,e} Ulrich Kortz,^c Jingping Wang^{*a} and Jingyang Niu^{*a}

^{*a*} Key Laboratory of Polyoxometalate Chemistry of Henan Province, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China. E-mail: jyniu@henu.edu.cn, jpwang@henu.edu.cn, Fax: (+86) 37123886876.

^b Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.

^c School of Engineering and Science, Jacobs University, P.O. Box 750 561, 28725 Bremen, Germany.

^d Department of Chemistry, Faculty of Sciences, University of Balamand, P.O.Box 100, Tripoli, Lebanon.

^e Department of Chemistry, Faculty of Science, Beirut Arab University, P.O. Box 11 50 20, Riad El Solh 1107 2809, Beirut, Lebanon.

Fig. S1 a) Representation of polyanion $[Nb_6(O_2)_6P_2W_{12}O_{56}]^{12}$ reported by Hill in 1997, b) Representation of polyanion $[Nb_6(O_2)_4P_2W_{12}O_{57}]^{10}$ in **1a**. All cations and crystal waters are omitted for clarity. Teal balls W; yellow balls Nb; purple balls P; red balls O.

Fig. S2 Viewing from different direction of the combined polyhedral/stick representation of polyanion **1**. All cations and crystal waters are omitted for clarity. Teal polyhedra $\{WO_6\}$; yellow polyhedral $\{Nb(O_2)O_5\}$; yellow balls Nb; purple balls P; red balls O.

Fig. S3 a) Representation of the adamantane {Nb₄O₆} in **2** and b) highlighting the protonated oxygens. Yellow balls Nb; red balls O; turquoise balls OH. The BVS values of the four terminal oxygens (O62) and two of the six bridging Nb–O–Nb oxygen atoms (O64) are -0.80 and -1.32, respectively.

Fig. S4. IR spectra of 1a, 2a and 3a in the region between 1250 and 400 cm⁻¹.

Fig. S5 Solution ${}^{31}P$ NMR (a) and ${}^{183}W$ NMR (b) spectra of compound 2a redissolved in D₂O.

irradiating

3 h after irradiation

Fig. S6 The color changes of the reaction mixture during irradiation time.

Fig. S7. The diffuse reflectance UV-vis-NIR spectrum of K-M function vs. energy of compound 1a. The band gap of 1a is about 2.58 eV.

Fig. S8 The diffuse reflectance UV-vis-NIR spectrum of K-M function vs. energy of compound 2a. The band gap of 2a is about 2.43 eV.

Fig. S9. XRD patterns of compound 1a (red), simulated XRD patterns of 1a (black). X-ray powder diffraction experiments were performed on a Bruker D8 Advance X-ray powder diffractometer operating at 40 kV and 40 mA.

Fig. S10. XRD patterns of compound 2a (red), simulated XRD patterns of 2a (black). X-ray powder diffraction experiments were performed on a Bruker D8 Advance X-ray powder diffractometer operating at 40 kV and 40 mA.

Oxygen Code	Bond Valence	Oxygen Code	Bond Valence	Oxygen Code	Bond Valence
01	-1.87	023	-1.89	045	-2.03
02	-2.04	024	-1.85	046	-2.01
03	-2.11	025	-2.05	047	-2.27
04	-1.97	026	-2.21	048	-2.25
05	-2.09	027	-1.00	049	-2.04
06	-2.00	028	-1.11	050	-1.94
07	-2.14	029	-1.64	051	-1.80
08	-2.14	030	-2.05	052	-2.21
09	-2.06	031	-0.89	053	-2.11
010	-1.97	032	-0.88	054	-2.14
011	-2.09	033	-2.11	055	-2.03
012	-2.28	034	-1.94	056	-2.10
013	-2.11	035	-0.93	057	-1.92
014	-2.14	036	-1.06	058	-2.08
015	-1.90	037	-1.85	059	-2.25
016	-1.81	038	-2.21	060	-2.08
017	-1.89	039	-1.96	061	-2.06
018	-2.19	040	-1.84	062	-2.11
019	-2.15	041	-1.17	063	-1.60
020	-2.10	042	-1.17	064	-2.10
021	-2.26	043	-1.96	065	-1.53
022	-2.26	044	-2.17		

Table S1. BVS calculation results of all the oxygen atoms on polyanion **1**.

Oxygen Code	Bond Valence	Oxygen Code	Bond Valence	Oxygen Code	Bond Valence
01	-1.83	024	-2.00	047	-1.77
02	-1.90	025	-2.14	048	-1.86
03	-2.00	026	-1.96	049	-1.90
04	-2.05	027	-1.91	050	-1.86
05	-1.93	028	-1.79	051	-1.82
06	-1.93	029	-2.08	052	-1.93
07	-1.84	030	-2.08	053	-2.11
08	-2.07	031	-1.79	054	-2.06
09	-1.93	032	-1.78	055	-1.99
010	-1.99	033	-2.01	056	-2.13
011	-1.82	034	-2.08	057	-2.11
012	-2.18	035	-1.76	058	-1.88
013	-1.93	036	-1.62	059	-2.09
014	-2.07	037	-2.16	060	-1.81
015	-1.86	038	-2.07	061	-1.90
016	-1.77	039	-1.70	062	-0.80
017	-2.10	040	-2.13	063	-2.00
018	-2.09	041	-2.06	064	-1.32
019	-1.87	042	-1.81	065	-1.98
020	-1.79	043	-1.74	066	-1.63
021	-2.07	044	-1.93	067	-1.96
022	-2.13	045	-1.89		
023	-1.89	046	-1.90		

Table S2. BVS calculation results of all the oxygen atoms on polyanion **2**.