Combining coordination and supramolecular chemistry to explore uranyl assembly in the solid state
Korey P. Carter and Christopher L. Cahill*
Department of Chemistry, The George Washington University, $72521^{\text {st }}$ Street, NW, Washington, D.C. 20052, United States

E-mail:cahill@gwu.edu

Supporting Info Section

I. Additional Figures

II. Powder X-ray Diffraction data

III. Thermal Ellipsoid Plots

IV. Tables of Bond Distances
V. Bond Valence Summations
VI. References

I. Additional Figures

Figure S1: Complex 3 shown down the [010] direction highlighting the hydrogen bonding interactions that decorate the 1D chain of uranyl monomers.

Figure S2: Complex 7 viewed down approximately the [110] direction highlighting the localized $\mathrm{Br}-\pi$ interactions that assemble neighboring uranyl monomers.

Figure S3: Complex 10 viewed down approximately the [011] direction highlighting the Type I Br-Cl interaction that links neighboring uranyl monomers.

Figure S4: Complex 12 viewed along approximately the [100] direction highlighting the localized $\mathrm{Cl}-\pi$ interaction that links adjacent uranyl dimers.

II. Powder X-ray diffraction data

For the following PXRD spectra it is important to note that calculated patterns are from low temperature (100 K) (complexes $\mathbf{1 , 3 , 7} 7$ and 11) data collections while observed patterns were collected at room temperature (298 K). This difference may result in slight shifts in two-theta values. For complexes 2, 4-6, 8-10 and $\mathbf{1 2}$ calculated and observed patterns were both collected a room temperature (298K).

Figure S5: The observed PXRD pattern of structure 1 with calculated pattern overlaid in blue.

Figure S6: The observed PXRD pattern of structure 2 with calculated pattern overlaid in blue. We acknowledge a minor impurity as indicated with an asterisk and we have identified this impurity as excess 1,10-phenanthroline (calculated CIF overlaid in red).

Figure S7: The observed PXRD pattern of structure 3 with calculated pattern overlaid in blue. We acknowledge several impurities in the bulk product. Some of these impurities have been identified as 1,10-phenanthroline (calculated CIF overlaid in red) and these are indicated with purple asterisks. Impurities that could not be identified are indicated with green asterisks.

Figure S8: The observed PXRD pattern of structure 4 with calculated pattern overlaid in blue. We acknowledge several impurities as indicated with asterisks.

Figure S9: The observed PXRD pattern of structure 5 with calculated pattern overlaid in blue. We acknowledge a minor impurity as indicated with an asterisk.

Figure S10: The observed PXRD pattern of structure $\mathbf{6}$ with calculated pattern overlaid in blue. We acknowledge two minor impurities as indicated with asterisks.

Figure S11: The observed PXRD pattern of structure 7 with calculated pattern overlaid in blue. We acknowledge several impurities in the bulk product. Some of these impurities
have been identified as $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine (calculated CIF overlaid in red) and these are indicated with purple asterisks. Impurities that could not be identified are indicated with green asterisks.

Figure S12: The observed PXRD pattern of structure $\mathbf{8}$ with calculated pattern overlaid in blue.

Figure S13: The observed PXRD pattern of structure 9 with calculated pattern overlaid in blue. We acknowledge two minor impurities as indicated with asterisks.

Figure S14: The observed PXRD pattern of structure 10 with calculated pattern overlaid in blue. We acknowledge a number of minor impurities as indicated with asterisks.

Figure S15: The observed PXRD pattern of structure 11 with calculated pattern overlaid in blue. We acknowledge a couple of minor impurities in the bulk product. One of these impurities was identified as 4^{\prime}-chloro- $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine (calculated CIF overlaid in red) and it is indicated with a purple asterisk. Impurities that could not be identified are indicated with green asterisks.

Figure S16: The observed PXRD pattern of structure $\mathbf{1 2}$ with calculated pattern overlaid in blue.

III. Thermal Ellipsoid Plots

Figure S17: ORTEP illustration of complex 1. Ellipsoids are shown at 50\% probability level.

Figure S18: ORTEP illustration of structure 2. Ellipsoids are shown at 50% probability level.

Figure S19: ORTEP illustration of structure 3. Ellipsoids are shown at 50% probability level. Atoms labelled with an "i"" are reproduced through symmetry.

Figure S20: ORTEP illustration of structure 4. Ellipsoids are shown at 50% probability level. Atoms labelled with an "i'" are reproduced through symmetry.

Figure S21: ORTEP illustration of complex 5. Ellipsoids are shown at 50% probability level.

Figure S22: ORTEP illustration of structure 6. Ellipsoids are shown at 50\% probability level.

Figure S23: ORTEP illustration of structure 7. Ellipsoids are shown at 50\% probability level.

Figure S24: ORTEP illustration of structure 8. Ellipsoids are shown at 50\% probability level.

Figure S25: ORTEP illustration of structure 9. Ellipsoids are shown at 50\% probability level.

Figure S26: ORTEP illustration of structure 10. Ellipsoids are shown at 50% probability level.

Figure S27: ORTEP illustration of structure 11. Ellipsoids are shown at 50% probability level.

Figure S28: ORTEP illustration of structure 12. Ellipsoids are shown at 50% probability level.

IV. Tables of Bond Distances

Table S1: U-O Axial Bond Lengths in $\mathrm{UO}_{2}{ }^{2+}$ complexes (1-12).

Complex	$\mathrm{d}_{\mathrm{U} 1-\mathrm{O} 1}$ $[\AA]$	$\mathrm{d}_{\mathrm{U} 11-\mathrm{O} 2}$ $[\AA]$	$\mathrm{d}_{\mathrm{U} 2-\mathrm{O} 3}$ $[\AA]$	$\mathrm{d}_{\mathrm{U} 2-\mathrm{O} 4}$ $[\AA]$
1	$1.780(3)$	$1.769(2)$		
2	$1.764(3)$	$1.755(3)$		
3	$1.773(3)$			$1.794(3)$
4	$1.776(3)$	$1.799(3)$	$1.794(3)$	$1.758(4)$
5	$1.765(3)$	$1.758(3)$	$1.760(4)$	
6	$1.760(3)$	$1.773(3)$		
7	$1.776(3)$	$1.772(3)$		$1.766(7)$
8	$1.774(7)$	$1.759(7)$	$1.749(7)$	$1.755(4)$
9	$1.763(3)$	$1.757(4)$	$1.764(4)$	
10	$1.755(4)$	$1.754(4)$		$1.769(5)$
11	$1.758(4)$	$1.760(4)$	$1.778(5)$	$1.765(4)$
12	$1.766(4)$	$1.756(4)$	$1.767(5)$	

Table S2: U-O Equatorial Bond Lengths in $\mathrm{UO}_{2}{ }^{2+}$ complexes (1-12).

Complex	$\mathrm{d}_{\mathrm{Ul}-\mathrm{O} 3}$ $[\AA]$	$\mathrm{d}_{\mathrm{U} 1-\mathrm{O} 4}$ [Å]	$\mathrm{d}_{\mathrm{Ul}-\mathrm{O}}$ [\AA]	$\mathrm{d}_{\mathrm{U} 1-\mathrm{O} 6}$ [\AA]	$\begin{gathered} \mathrm{d}_{\mathrm{U} 2-\mathrm{O}} \\ {[\AA]} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{d}_{\mathrm{U} 2-\mathrm{O6}} \\ {[\AA \bar{\AA}]} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{d}_{\mathrm{U} 2-07} \\ {[\AA]} \\ \hline \end{gathered}$	$\mathrm{d}_{\mathrm{U} 2-\mathrm{O} 8}$ [\AA]	$\begin{gathered} \mathrm{d}_{\mathrm{UL}-\mathrm{O9}} \\ {[\AA]} \\ \hline \end{gathered}$	$\mathrm{d}_{\mathrm{U2}-\mathrm{O} 10}$ [\AA]
1	2.405(2)	2.442(2)	2.225(3)							
2	2.404(3)	2.533(3)	2.488(3)	2.439(3)						
3	2.438(4)	2.438(4)	2.235(4)							
4			2.320(3)	2.233(3)	2.355(3)	2.322(3)		2.376(3)		
5			2.255(3)	2.398(3)	2.374(3)		2.314(4)	2.453(4)	2.548(3)	2.276(3)
6	2.230(3)		2.285(3)							
7	2.265(3)		2.268(3)							
8			2.241 (6)	2.388(6)	2.361(6)		2.383(6)	2.435(7)	2.451(7)	2.263(7)
9			2.260(3)	2.409(3)	2.406(3)		2.346(3)	$2.438(4)$	2.436(3)	2.310(4)
10	2.290(4)		2.240(4)							
11			2.264(4)	2.402(5)	2.390(4)		2.336(4)	2.451(4)	2.428(4)	2.293(4)
12			2.226(4)	2.398(4)	2.390(4)		2.391(4)	2.440(4)	$2.445(5)$	2.244(5)

Table S3: U-N Bond Lengths in $\mathrm{UO}_{2}{ }^{2+}$ complexes (1-12).

Complex	$\mathrm{d}_{\mathrm{U}-\mathrm{N} 1}$ $[\AA]$	$\mathrm{d}_{\mathrm{U}-\mathrm{N} 2}$ $[\AA]$	$\mathrm{d}_{\mathrm{U}-\mathrm{N} 3}$ $[\AA]$
1	$2.552(3)$	$2.600(3)$	
2	$2.664(4)$	$2.705(4)$	
3	$2.561(5)$	$2.540(5)$	

4	$2.673(4)$	$2.663(4)$	
5	$2.592(4)$	$2.590(4)$	$2.580(4)$
6	$2.558(4)$	$2.600(3)$	$2.587(3)$
7	$2.576(3)$	$2.595(4)$	$2.560(3)$
8	$2.561(8)$	$2.583(8)$	$2.575(8)$
9	$2.581(5)$	$2.603(4)$	$2.574(4)$
10	$2.568(5)$	$2.604(4)$	$2.589(5)$
11	$2.568(6)$	$2.587(5)$	$2.560(5)$
12	$2.580(5)$	$2.585(5)$	$2.564(5)$

V. Bond Valence Summations

Table S4: Bond Valence Summations for oxygen atoms in Compound 4

O5	Distance (\AA)	Bond Valence Sum	O6	Distance (\AA)	Bond Valence Sum
Bound atoms			Bound atoms		
U1	2.320	0.5886	U1	2.233	0.6961
U2	2.355	0.5502	U2	2.322	0.5864
	Sum	1.138	U2	2.236	0.6921
				Sum	1.974
OW1					
Bound atoms					
U2	2.595	0.3465			
	Sum	0.3465			

Bond valence summations for selected oxygen atoms in 4. The values indicated that O 5 is a hydroxyl group while O6 is an oxide group. ${ }^{1,2}$

Table S5: Bond Valence Summations for hydroxide oxygen atom in Compound 5

O5	Distance (\AA)	Bond Valence Sum
Bound atoms		
U1	2.225	0.7069
U2	2.374	0.5305
	Sum	1.237

Table S6: Bond Valence Summations for hydroxide oxygen atom in Compound $\mathbf{8}$

O5	Distance (\AA)	Bond Valence Sum
Bound atoms		
U1	2.241	0.6854
U2	2.361	0.5439
	Sum	1.229

Table S7: Bond Valence Summations for hydroxide oxygen atom in Compound 9

O5	Distance (\AA)	Bond Valence Sum
Bound atoms		
U1	2.260	0.6608
U2	2.406	0.4987
	Sum	1.159

Table S8: Bond Valence Summations for oxygen atoms in Compound 11

O5	Distance (\AA))	Bond Valence Sum
Bound atoms	2.264	
U1	2.390	0.6557
U2	Sum	0.5144
	1.170	

Table S9: Bond Valence Summations for oxygen atoms in Compound 12

O5	Distance (\AA)	Bond Valence Sum
Bound atoms		
U1	2.264	0.7055
U2	2.390	0.5144
	Sum	1.219

VI. References

1. N. E. Brese and M. O'Keeffe, Acta Crystallographica Section B, 1991, 47, 192197.
2. P. C. Burns, R. C. Ewing and F. C. Hawthorne, The Canadian Mineralogist, 1997, 35, 1551-1570.
