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Table S1. Geometry analysis of 1–2 by SHAPE software 
 

Compound Pentagonal bipyramid 
(D5h) 

Capped octahedron 
(C3v) 

Capped trigonal prism 
(C2v) 

1 1.76190 3.61921 2.50926 
1 1.78176 3.66342 2.52627 

 
Table S2. CF Parameters determined for compounds 1 and 2.  
 

Parameters B0
2 / cm−1 B0

4 / cm−1 B0
6 / cm−1 SQXa 

1 728(8) -1492(3) 166(6) 0.0056 
2 578(7) -1715(8) -641(6) 0.0081 
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Table S3. Energies and corresponding composition of the 8 doublets of the 6H15/2 

multiplets calculated with the CF parameters for compound 1. Contributions lower 
than 1% are not shown here.  
 

 MJ sublevel Energy / cm-1 
1 0.705 |±13/2> + 0.295 |±3/2> 0 
2 0.909 |±11/2> + 0.091 |±1/2> 11.99 
3 0.976 |±9/2> + 0.094 |±1/2> 104.9 
4 |±15/2> 176.3 
5 0.904 |±7/2> + 0.094 |±3/2> 227.4 
6 |±5/2> 346.1 
7 0.904|±3/2> + 0.058 |±7/2>+ 0.038 |±13/2> 437.6 
8 0.871|±1/2> + 0.102|±9/2> + 0.019|±7/2> 486.9 

 
Table S4. Energies and corresponding composition of the 8 doublets and 1 singlet of 
the 5I8 multiplets calculated with the CF parameters for compound 2. Contributions 
lower than 1% are not shown here.  
 

 MJ stark sublevel Energy / cm-1 
1 0.538|±7> + 0.212|±3/2> 0 
2 0.538|±6> + 0.462|±2> 20.07 
3 0.849|±5> + 0.143|±1> 142.0 
4 0.736 |±4> + 0.264 |0> 251.0 
5a 0.284 |+4> + 0.433 |0>+ 0.284 |-4> 286.2 
6 0.732|±1> + 0.185|±3> +0.070 |±5> 294.4 
7 0.447 |±3> + 0.179 |±7> +0.370 |±1> 304.5 
8 0.874 |±2> + 0.117 |±6> 309.2 
9 |±8> 371.9 

a: this sublevel is singlet. 



Table S5. The parameters obtained by fitting the ac magnetic susceptibilities of 
compound 1 in indicated dc field at 2 K.  
 

H / kOe χT/ cm3·mol-1 χS/ cm3·mol-1 ln(τA / s) αA ln(τB / s) αB fA Ra 

0.1 5.99(4) 5.64(6) -7.58(1) 0.20(2) 
   

6.8×10-6 

0.3 5.90(1) 3.90(4) -7.36(1) 0.22(5) 
   

8.8×10-5 

0.5 5.96(8) 2.63(4) -7.05(7) 0.14(1) -3.11(7) 0.16(2) 0.83(2) 8.8×10-6 

1.0 5.56(9) 0.82(1) -6.19(1) 0.33(2) -2.86(5) 0.03(1) 0.75(4) 6.5×10-5 

1.5 5.21(7) 0.28(8) -6.00(1) 0.35(5) -2.49(3) 0.05(1) 0.57(2) 3.3×10-4 

2.0 4.82(9) 0.13(2) -6.26(5) 0.34(6) -2.23(2) 0.09(2) 0.42(2) 1.0×10-3 

2.5 4.35(9) 0.11(1) -6.69(5) 0.29(2) -1.97(1) 0.09(3) 0.31(2) 1.0×10-3 

3.0 4.00(4) 0.06(4) -7.24(5) 0.32(7) -1.65(5) 0.14(4) 0.25(1) 2.2×10-3 
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Table S6. Summary of the parameters of relaxation A obtained by fitting the ac 
magnetic data of compounds 1 and 1a. 
 

compound 
H / 

kOe 
τa / ms 

Ab / 

s-1·K-1·T-2 
B1

b / s-1 B2
b / T-2 

Cc / 

s-1·K-9 
Ueff / K τ0 / s 

1 1.5 2.48(2) 5.6(4)×103 2.5(6)×103 6(2)×103 0d 41.6±1.3 1.3(3)×10-9 

1 0.5 0.87(6) 5.6(4)×103 2.5(6)×103 6(2)×103 0.17±0.04 39.9±1.1 9.0(9)×10-10 

1a 1.5 6.46(13) 3.2(3)×103 1.5(3)×103 2.4(9)×103 0d 36.9±1.8 7.6(5)×10-10 
a obtained at 2 K; b Determined by fitting the H-dependence of τ; c parameter for Raman exponent 
(n = 9); d fixed to zero. 
 
Table S7. The parameters obtained by fitting the ac magnetic susceptibilities of 
compound 1 under 0.5 kOe dc field.  
 
T / K χT/ cm3·mol-1 χS/ cm3·mol-1 ln(τA / s) αA ln(τB / s) αB fA Ra 

1.8 6.51(5) 2.94(2) -6.46(2) 0.12(4) -2.97(1) 0.12(3) 0.81(2) 1.3×10-5 

2.0 5.96(8) 2.63(4) -7.05(3) 0.14(1) -3.11(3) 0.16(3) 0.83(4) 8.9×10-6 

2.3 5.29(7) 2.27(8) -7.75(4) 0.18(4) -3.32(3) 0.16(3) 0.87(1) 5.9×10-6 

2.5 4.92(9) 2.10(2) -8.13(2) 0.18(1) -3.44(2) 0.20(3) 0.89(3) 5.8×10-6 

2.7 4.59(8) 1.97(4) -8.45(1) 0.18(3) -3.58(2) 0.22(2) 0.91(2) 8.0×10-6 

3.0 4.19(1) 1.84(6) -8.90(2) 0.15(2) -3.83(4) 0.36(5) 0.91(1) 1.3×10-5 

3.2 3.95(3) 1.72(3) -9.25(2) 0.14(3) -4.04(1) 0.37(3) 0.92(2) 8.6×10-6 

3.4 3.67(2) 1.54(7) -9.77(5) 0.22(3) 
   

9.5×10-5 

3.6 3.49(3) 1.05(1) -10.30 0.26(1) 
   

5.9×10-5 

3.8 3.33(3) 1.81(5) -11.02 0.32(2) 
   

4.4×10-5 

a [ ] [ ]∑∑ +−+−=
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Table S8. The parameters obtained by fitting the ac magnetic susceptibilities of 
compound 1 under 1.5 kOe dc field.  
 
T / K χT/ cm3·mol-1 χS/ cm3·mol-1 ln(τA / s) αA ln(τB / s) αB fA Ra 

1.8 5.85(1) 0.38(4) -5.87(2) 0.27(1) -2.21(4) 0.08(1) 0.48(2) 6.4×10-5 

2.0 5.21(3) 0.28(2) -6.00(1) 0.35(5) -2.49(2) 0.05(4) 0.57(2) 3.3×10-4 

2.3 5.00(2) 0.23(1) -6.21(1) 0.39(1) -2.70(1) 0.13(2) 0.61(2) 8.8×10-5 

2.5 4.62(2) 0.21(4) -6.15(4) 0.41(3) -2.78(4) 0.04(3) 0.74(1) 1.9×10-4 

2.7 4.41(1) 0.22(1) -6.46(2) 0.39(4) -2.86(1) 0.19(4) 0.75(4) 6.9×10-5 

3.0 4.05(2) 0.23(2) -7.08(4) 0.36(2) -2.84(1) 0.17(3) 0.80(4) 8.9×10-5 

3.2 3.93(2) 0.33(1) -7.81(3) 0.26(1) -3.43(4) 0.40(4) 0.67(2) 2.1×10-4 

3.4 3.66(1) 0.44(3) -8.37(1) 0.18(1) -4.01(3) 0.41(1) 0.67(5) 2.9×10-5 

3.6 3.49(1) 0.45(4) -8.95(3) 0.15(4) -4.00(3) 0.41(3) 0.70(2) 1.0×10-4 

3.8 3.30(3) 0.55(2) -9.46(4) 0.10(4) -4.38(2) 0.42(2) 0.71(2) 2.0×10-5 

4.0 3.14(3) 0.53(5) -10.03(2) 0.09(4) -4.50(1) 0.41(4) 0.75(4) 2.8×10-5 

a [ ] [ ]∑∑ +−+−=
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Table S9. The parameters obtained by fitting the ac magnetic susceptibilities of 
compound 1a in indicated dc field at 2 K.  
 

H / kOe χT/ cm3·mol-1 χS/ cm3·mol-1 ln(τA / s) αA Ra 

0.1 4.74(4) 3.16(4) -7.16(3) 0.24(4) 1.6×10-5 
0.3 4.80(1) 1.08(2) -5.99(1) 0.29(2) 1.0×10-4 
0.5 4.78(2) 0.52(1) -5.47(1) 0.29(1) 2.1×10-4 
1.0 4.49(1) 0.27(5) -5.08(1) 0.27(1) 4.4×10-4 
1.5 4.20(1) 0.20(3) -5.04(2) 0.25(3) 7.2×10-4 
2.0 3.66(1) 0.15(2) -5.39(2) 0.24(3) 6.9×10-4 
2.5 2.88(3) 0.17(1) -6.02(2) 0.17(2) 4.9×10-4 
3.0 2.38(1) 0.16(4) -6.56(5) 0.16(1) 8.3×10-4 

a [ ] [ ]∑∑ +−+−=
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Table S10. The parameters obtained by fitting the ac magnetic susceptibilities of 
compound 1a under 1.5 kOe dc field.  
 

T / K χT/ cm3·mol-1 χS/ cm3·mol-1 ln(τA / s) αA Ra 

1.8 4.47(2) 0.17(3) -4.64(2) 0.25(5) 4.2×10-4 
2.0 4.20(1) 0.20(4) -5.04(2) 0.25(4) 7.1×10-4 
2.3 3.69(4) 0.26(1) -5.99(1) 0.25(2) 3.7×10-4 
2.5 3.43(1) 0.31(3) -6.80(4) 0.25(4) 3.6×10-4 
2.7 3.22(3) 0.31(2) -7.72(2) 0.27(4) 3.0×10-4 
2.8 3.11(2) 0.30(5) -8.21(1) 0.28(5) 4.8×10-4 



3.0 2.94(1) 0.32(5) -9.22(4) 0.33(3) 2.0×10-4 
3.2 2.80(1) 0.31(3) -10.41(4) 0.41(3) 1.7×10-4 
3.4 2.67(1) 0.31(3) -12.31(1) 0.57(5) 1.7×10-4 

 
 
Table S11. The parameters obtained by fitting the ac magnetic susceptibilities of 
compound 2 in indicated dc field at 1.8 K.  
 

H / kOe χT/ cm3·mol-1 χS/ cm3·mol-1 ln(τ / s) α Ra 
0.5 7.93(4) 2.43(1) -14.77(1) 0.43(5) 9.3×10-7 
1.0 6.91(3) 2.43(1) -12.32(1) 0.34(1) 2.0×10-6 
1.5 5.64(3) 2.43(2) -11.46(1) 0.33(1) 2.3×10-6 
2.0 4.43(3) 1.60(1) -11.40(1) 0.32(2) 6.8×10-6 
2.5 3.44(1) 0.95(1) -11.42(3) 0.31(2) 1.4×10-5 
3.0 2.68(2) 0.43(1) -11.44(4) 0.29(1) 5.1×10-6 

a [ ] [ ]∑∑ +−+−=
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Table S12. The parameters obtained by fitting the ac magnetic susceptibilities of 
compound 2 under 1.5 kOe dc field. 
 

T / K χT/ cm3·mol-1 χS/ cm3·mol-1 ln(τ / s) α Ra 
1.8 5.64(2) 2.43(1) -11.46(1) 0.33(1) 2.3×10-6 
1.9 5.49(2) 2.50(1) -11.47(2) 0.33(2) 2.3×10-6 
2.0 5.31(2) 2.40(1) -11.46(3) 0.30(2) 1.1×10-5 
2.1 5.16(3) 2.49(5) -11.47(3) 0.31(1) 1.6×10-6 
2.2 5.02(3) 2.45(1) -11.52(5) 0.31(1) 1.0×10-6 
2.3 4.88(4) 2.43(4) -11.58(1) 0.31(3) 8.0×10-6 
2.4 4.76(1) 2.20(1) -11.75(4) 0.31(3) 1.1×10-6 
2.5 4.65(3) 2.29(3) -11.80(1) 0.33(1) 7.4×10-7 
2.6 4.53(2) 2.10(1) -11.89(2) 0.32(5) 1.7×10-6 
2.7 4.43(3) 2.10(1) -11.93(1) 0.31(4) 9.5×10-7 
2.8 4.33(3) 2.20(1) -12.06(3) 0.35(3) 4.9×10-6 
2.9 4.23(1) 2.10(1) -12.10(3) 0.33(3) 2.1×10-6 
3.0 4.33(4) 2.10(1) -12.15(1) 0.36(5) 4.9×10-6 
3.1 4.04(4) 2.10(1) -12.24(2) 0.34(2) 1.2×10-6 

a [ ] [ ]∑∑ +−+−=
2222 "/)""()''( obsobscalobscalobs 'R χχχχχχ  
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Figure S1. TG curves of compounds 1 (top), 2 (middle) and 1a (bottom).  
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Figure S2. PXRD pattern of 1 refined by TOPAS software. Rwp = 8.78%. Cell 
parameters: P-1, a = 9.184 Å, b = 9.274 Å, c = 15.196 Å , α = 88.052 °, β = 
76.383 °, γ = 75.812 °, V = 1218.7 Å3 
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Figure S3. PXRD pattern of 2 refined by TOPAS software. Rwp = 11.72%. Cell 
parameters: P-1, a = 9.167 Å, b = 9.253 Å, c = 15.161 Å , α = 87.967 °, β = 
76.471 °, γ = 75.754 °, V = 1211.5 Å3 
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Figure S4. PXRD patterns for compounds 1 and 1a, and that simulated from the 
single crystal data of 1.  

10 20 30 40 50
 

10 12 14

 

 

 

2θ / °

 2 
 simulate

 
Figure S5. PXRD pattern for compound 2, and that simulated from the single crystal 
data of 2.  
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Figure S6. The M vs. H/T plots for 1 (left) and 2 (right) at the indicated temperatures 
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Figure S7. Temperature dependent in-phase (χM’) and out-of-phase (χM”) signals of 1 
in zero dc field.  
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Figure S8. Frequency dependent in-phase (χM’) and out-of-phase (χM”) signals of 1 in 
indicated dc fields at 2 K. The solid lines represent the simulated results.  
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Figure S9. Cole-Cole plots of 1 in indicated dc fields at 2 K. The solid lines represent 
the simulated results.  
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Figure S10. The ln(τ) vs. H plots for 1 (relaxation A) and 1a, the solid lines represent 
the fitting with Eq(5).  
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Figure S11. Temperature dependent in-phase (χM’) and out-of-phase (χM”) signals of 
1 in 0.5 kOe dc field.  
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Figure S12. Frequency dependent in-phase (χM’) and out-of-phase (χM”) signals of 1 
in 0.5 kOe dc field. The solid lines represent the simulated results.  

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

χ M
"/

em
u⋅

m
ol

-1

χM'/emu⋅mol-1

 

 

 1.8 K
 2.0 K
 2.3 K
 2.5 K
 2.7 K
 3.0 K
 3.2 K
 3.4 K
 3.6 K
 3.8 K

 
Figure S13. Cole-Cole plots of 1 in 0.5 kOe dc field. The solid lines represent the 
simulated results.  
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Figure S14. Temperature dependent in-phase (χM’) and out-of-phase (χM”) signals of 
1 in 1.5 kOe dc field.  
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Figure S15. Frequency dependent in-phase (χM’) and out-of-phase (χM”) signals of 1 
in 1.5 kOe dc field. The solid lines represent the simulated results.  
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Figure S16. Cole-Cole plots of 1 in 1.5 kOe dc field. The solid lines represent the 
simulated results.  
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Figure S17. The ln(τ) vs. T-1plots of 1 under 0.5 kOe (top) and 1.5 kOe (bottom). The 
solid lines represent Arrhenius fitting which yielded the anisotropy barrier: UA = 
35.3±3.2 K, τ0 = 1.7±1.0 × 10-9 s for 0.5 kOe; UA = 34.9±0.8 K, τ0 = 7.6±1.4 × 10-9 s 
for 1.5 kOe 
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Figure S18. Temperature dependent in-phase (χM’) and out-of-phase (χM”) signals of 
1a in zero dc field. 
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Figure S19. Frequency dependent in-phase (χM’) and out-of-phase (χM”) signals of 1a 
in indicated dc fields at 2 K. The solid lines represent the simulated results.  
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Figure S20. Cole-Cole plots of 1a in indicated dc fields at 2 K. The solid lines 
represent the simulated results.  
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Figure S21. Temperature dependent in-phase (χM’) and out-of-phase (χM”) signals of 
1a in 1.5 kOe dc field.  
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Figure S22. Frequency dependent in-phase (χM’) and out-of-phase (χM”) signals of 1a 
in 1.5 kOe dc field. The solid lines represent the simulated results. 
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Figure S23. Cole-Cole plots of 1a in 1.5 kOe dc field. The solid lines represent the 
simulated results.  
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Figure S24. The ln(τ) vs. T plot for 1a. The solid line represents the best fitting with 
Eq(6).  
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Figure S25. Temperature dependent in-phase (χM’) and out-of-phase (χM”) signals of 
2 in zero dc field.  
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Figure S26. Frequency dependent in-phase (χM’) and out-of-phase (χM”) signals of 2 
in indicated dc fields at 1.8 K. 
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Figure S27. Temperature dependent in-phase (χM’) and out-of-phase (χM”) signals of 
2 in 1.5 kOe dc field.  
 
 

10 100 1000

3.0

3.5

4.0

4.5

5.0

5.5

χ M
'/e

m
u⋅

m
ol

-1

ν  /  Hz

 

 

 1.8 K  1.9 K  2.0 K  2.1 K
 2.2 K  2.3 K  2.4 K  2.5 K
 2.6 K  2.7 K  2.8 K  2.9 K
 3.0 K  3.1 K

10 100 1000

0.0

0.1

0.2

0.3

0.4

 
 

 

ν  /  Hz

χ M
"/

em
u⋅

m
ol

-1

 1.8 K  1.9 K  2.0 K  2.1 K
 2.2 K  2.3 K  2.4 K  2.5 K
 2.6 K  2.7 K  2.8 K  2.9 K
 3.0 K  3.1 K

 

 
Figure S28. Frequency dependent in-phase (χM’) and out-of-phase (χM”) signals of 2 
in 1.5 kOe dc field. The solid lines represent the simulated results.  



3.9 4.2 4.5 4.8 5.1 5.4 5.7

0.0

0.1

0.2

0.3

0.4

χ M
"/

em
u⋅

m
ol

-1

χM'/emu⋅mol-1

 

 

 1.8 K  1.9 K  2.0 K  2.1 K
 2.2 K  2.3 K  2.4 K  2.5 K
 2.6 K  2.7 K  2.8 K  2.9 K
 3.0 K  3.1 K

 
Figure S29. Cole-Cole plots of 2 in 1.5 kOe dc field. The solid lines represent the 
simulated results. 
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Figure S30. The logarithmic magnetization relaxation time (τ) versus T-1 plots with 
Arrhenius fitting for 2.  
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Figure S31. Room-temperature (a) emission and (b) excitation spectra of 1 excited at 
349 nm and monitored at 415 nm and 571 nm, respectively. The vertical lines assign 
intra-4f self-absorptions.  
 



350 400 450 500 550 600 650
 wavelength / nm

 

 

In
ten

sit
y /

 a
.u

.

 323 nm
 349 nm

250 300 350 400 450
 wavelength / nm

 

 

 
In

te
ns

ity

 415 nm
 479 nm
 522 nm

 

Figure S32. Room-temperature (a) emission and (b) excitation spectra of notpH6 
ligand. 

250 300 350 400 450
wavelength / nm

6P5/2

6P7/2
6P3/2

In
ten

sit
y  

 

 415 nm
 460 nm
 478 nm
 571 nm

4I13/2

 absorption

 

 

6H15/2

 

Figure S33. The excitation spectra of 1 at room temperature compared to its 
UV-Visible absorption spectrum.  
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Figure S34. Room-temperature (a) emission and (b) excitation spectra of 1a excited 
at 322 and 349 nm and monitored at X nm, respectively.  
 



 
Figure S35. Energy level scheme with ligand emission, Dy3+ emission and 
self-absorption and magnetic relaxation of 1.  
 

0 10 20 30 40 50 60 70
 

0 10 20 30 40 50 60 70

-0.1

0.0

0.1

0.2

Re
gu

la
r R

es
id

ua
l

Independent Variable
 

 

time / ns

In
te

ns
ity

 / 
a.

u.

18 K
300 K

 

Figure S36. Emission decay curves (18 and 300K) of 1 monitored at 571 nm and 
excited at 355 nm. The solid lines represent the data best fit using a single exponential 
function. The inset shows the respective regular residual plots (χ2

red = 1.02×10-3, 18 K,  
and χ2

red = 7.15×10-4, 300 K) values for a better judgment of the fits quality.  
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Figure S37. Room-temperature emission decay curve of 1a monitored at 571 nm and 
excited at 355 nm. The solid line represents the data best fit using a single exponential 
function. The inset shows the respective regular residual plot (χ2

red=1.62×10-5) for a 
better judgment of the fit quality. 
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Figure S38. Emission decay curves of notpH6 monitored at 415 nm and 525 nm and 
excited at 355 nm. The solid lines represent the data best fit using a single exponential 
function. The inset shows the respective regular residual plots (χ2

red=1.80×10-4, 
415 nm, χ2

red=1.80×10-4, 525 nm) values for a better judgment of the fits quality.  
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Figure S39. Room-temperature excitation spectra monitored within 410-600 nm and 
UV-Visible reflectance spectra of 2. 
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Figure S40. Room-temperature emission spectra excited between 265 nm and 430 nm 
and UV-Visible reflectance spectra of 2. 

 


