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Table S1. Geometry analysis of 1-2 by SHAPE software

Compound Pentagonal bipyramid ~ Capped octahedron  Capped trigonal prism

(Dsh) (Cav) (Cx)
1 1.76190 3.61921 2.50926
1 1.78176 3.66342 2.52627

Table S2. CF Parameters determined for compounds 1 and 2.

Parameters Bg?/cmt  Bo*/em? BP/ecm?t  SQX?
1 728(8)  -1492(3)  166(5)  0.0056
2 578(7)  -1715(8)  -641(6)  0.0081

5o = 500~ 2 01 20

Table S3. Energies and corresponding composition of the 8 doublets of the ®Hys
multiplets calculated with the CF parameters for compound 1. Contributions lower
than 1% are not shown here.

M; sublevel Energy / cm™

1 0.705 [+13/2> + 0,295 [+3/2> 0

2 0.909 [+11/2> + 0.091 [+1/2> 11.99
3 0.976 [+9/2> + 0.094 [+1/2> 104.9
4 1+15/2> 176.3
5 0.904 [£7/2> + 0.094 |+3/2> 227.4
6 +5/2> 346.1
7 0.904[+3/2> + 0.058 [+7/2>+ 0.038 [+13/2>  437.6
8  0.871[+1/2> + 0.102[+9/2> + 0.019+7/2> 486.9

Table S4. Energies and corresponding composition of the 8 doublets and 1 singlet of
the °lg multiplets calculated with the CF parameters for compound 2. Contributions
lower than 1% are not shown here.

M; stark sublevel Energy / cm™

1 0.538/+7> + 0.212[+3/2> 0

2 0.538|+6> + 0.462|+2> 20.07
3 0.849]+5> + 0,143+ 1> 142.0
4 0.736 [+4> + 0.264 0> 251.0
5% 0.284 [+4> + 0.433 [0>+ 0.284 |-4> 286.2
6 0.732[+1> + 0.185[+3> +0.070 [+5> 204.4
7 0.447|£3> +0.179 |£7> +0.370 |[x1> 304.5
8 0.874 [+2> + 0.117 |+6> 309.2
9 +8> 371.9

a: this sublevel is singlet.



Table S5. The parameters obtained by fitting the ac magnetic susceptibilities of
compound 1 in indicated dc field at 2 K.

H/kOe yi cm3mol?  yo/ cm®*mol™ In(z/5) oa In(z / 5) o fa R?
0.1 5.99(4) 5.64(6)  -7.58(1) 0.20(2) 6.8x10°
0.3 5.90(1) 3.90(4)  -7.36(1) 0.22(5) 8.8x10°
0.5 5.96(8) 263(4)  -7.05(7) 0.14(1) -311(7) 0.16(2) 0.83(2) 8.8x10°
1.0 5.56(9) 0.82(1)  -6.19(1) 0.33(2) -2.86(5) 0.03(1) 0.75(4) 6.5x10°
15 5.21(7) 028(8)  -6.00(1) 0.35(5) -2.49(3) 0.05(1) 0.57(2) 3.3x10"
2.0 4.82(9) 013(2)  -6.26(5) 0.34(6) -223(2) 0.09(2) 0.42(2) 1.0x10°
25 4.35(9) 0.11(1)  -6.69(5) 029(2) -1.97(1) 0.09(3) 0.31(2) 1.0x10%
3.0 4.00(4) 0.06(4)  -7.24(5) 0.32(7) -1.65(5) 0.14(4) 0.25(1) 2.2x10°

R=S\F etV + L=t V)Y [z’obf + 7

Table S6. Summary of the parameters of relaxation A obtained by fitting the ac
magnetic data of compounds 1 and 1a.

H/ A . - o
compound e 2/ ms Gl T B,"/s B,/ T LK Uer / K /S
1 15  248(2) 5.6(4)x10° 25(6)x10°  6(2)x10° 0 41.6%13 1.3(3)x10°
1 05  0.87(6) 56(4)x10° 2.5(6)x10° 6(2)x10°  0.17+0.04 39.9+1.1 9.0(9)x10™°
la 15  6.46(13) 3.2(3)x10° 1.5(3)x10° 2.4(9)x10° 0 36.9+1.8 7.6(5)x10™°

% obtained at 2 K; ® Determined by fitting the H-dependence of 7, ¢ parameter for Raman exponent

(n = 9); ¢ fixed to zero.

Table S7. The parameters obtained
compound 1 under 0.5 kOe dc field.

by fitting the ac magnetic susceptibilities of

T/IK ydem®*mol?  y/ cm®mol™  In(z,/5) on In(z/s) o5 fa R?
1.8 6.51(5) 2.94(2) -6.46(2) 0.12(4) -2.97(1) 0.12(3) 0.81(2) 1.3x10®
2.0 5.96(8) 2.63(4) -7.05(3) 0.14(1) -3.11(3) 0.16(3) 0.83(4) 8.9x10°
2.3 5.29(7) 2.27(8) -7.75(4)  0.18(4) -3.32(3) 0.16(3) 0.87(1) 5.9x10°
2.5 4.92(9) 2.10(2) -8.13(2) 0.18(1) -3.44(2) 0.20(3) 0.89(3) 5.8x10°
2.7 4.59(8) 1.97(4) -8.45(1) 0.18(3) -3.58(2) 0.22(2) 0.91(2) 8.0x10°
3.0 4.19(1) 1.84(6) -8.90(2) 0.15(2) -3.83(4) 0.36(5) 0.91(1) 1.3x10°
3.2 3.95(3) 1.72(3) -9.25(2) 0.14(3) -4.04(1) 0.37(3) 0.92(2) 8.6x10°
3.4 3.67(2) 1.54(7) -9.77(5)  0.22(3) 9.5x10°®
3.6 3.49(3) 1.05(1) -10.30  0.26(1) 5.9x10°
3.8 3.33(3) 1.81(5) -11.02  0.32(2) 4.4x10°°

ar = z [(Zyobs_z,ca] P A+ (X = )Z]/ Z [Z’obsz + Z”usz



Table S8. The parameters obtained by fitting the ac magnetic susceptibilities of
compound 1 under 1.5 kOe dc field.

T/IK ydem®mol®  yf cm®mol™  In(za/s) oa In(z / 5) o5 fa R?
18 5.85(1) 0.38(4) 587(2) 027(1) -2.21(4) 0.08(1) 0.48(2)  6.4x10°
2.0 5.21(3) 0.28(2) -6.00(1) 035(5) -2.49(2) 005(4) 057(2)  3.3x10"
2.3 5.00(2) 0.23(1) 6.21(1) 0.39(1) -2.70(1) 0.13(2) 061(2)  8.8x10°
25 4.62(2) 0.21(4) -6.15(4) 041(3) -2.78(4) 0.04(3) 074(1)  1.9x10"
2.7 4.41(1) 0.22(1) -6.46(2) 0.39(4) -2.86(1) 0.19(4) 0.75(4)  6.9x10°
3.0 4.05(2) 0.23(2) 7.08(4) 036(2) -2.84(1) 0.17(3) 0.80(4)  8.9x10°
3.2 3.93(2) 0.33(1) 781(3) 0.26(1) -343(4) 040(4) 067(2)  2.1x10"
3.4 3.66(1) 0.44(3) -837(1) 0.18(1) -401(3) 041(1) 067(5)  2.9x10°
3.6 3.49(1) 0.45(4) -8.95(3) 0.15(4) -400(3) 041(3) 070(2)  1.0x10"
3.8 3.30(3) 0.55(2) -9.46(4) 0.10(4) -438(2) 0.42(2) 071(2)  2.0x10°
4.0 3.14(3) 053(5)  -10.03(2) 0.09(4) -450(1) 0.41(4) 0.75(4)  2.8x10°

af = YtttV + Lt V1Y [z’obf + X

Table S9. The parameters obtained by fitting the ac magnetic susceptibilities of
compound la in indicated dc field at 2 K.

H/kOe yi/cm®>mol™ o/ cm®mol®  In(za/s) on R®
0.1 4.74(4) 3.16(4) -7.16(3)  0.24(4)  1.6x10°
0.3 4.80(1) 1.08(2) -5.99(1)  0.29(2)  1.0x10*
0.5 4.78(2) 0.52(1) -547(1) 0.29(1)  2.1x10*
1.0 4.49(1) 0.27(5) -5.08(1) 0.27(1)  4.4x10*
15 4.20(1) 0.20(3) -5.04(2) 0.25(3)  7.2x10*
2.0 3.66(1) 0.15(2) -539(2) 0.24(3)  6.9x10™
2.5 2.88(3) 0.17(1) -6.02(2) 0.17(2)  4.9x10*
3.0 2.38(1) 0.16(4) -6.56(5) 0.16(1)  8.3x10™

af = Y LotV + Lt VY [z’obf + /obe

Table S10. The parameters obtained by fitting the ac magnetic susceptibilities of
compound 1a under 1.5 kOe dc field.

TIK  gdemimol™  yo/cm®>mol™  In(zx/5s) oA R
1.8 4.47(2) 0.17(3) -4.64(2)  0.25(5) 4.2x10™
2.0 4.20(1) 0.20(4) -5.04(2)  0.25(4)  7.1x10™
2.3 3.69(4) 0.26(1) -5.99(1)  0.25(2)  3.7x10™
2.5 3.43(1) 0.31(3) -6.80(4) 0.25(4)  3.6x10™
2.7 3.22(3) 0.31(2) 7.72(2)  0.27(4)  3.0x10™

2.8 3.11(2) 0.30(5) -821(1) 0.28(5)  4.8x10™




3.0 2.94(1) 0.32(5) -9.22(4) 0.33(3)  2.0x10™
3.2 2.80(1) 0.31(3) -1041(4) 0.41(3)  1.7x10™
3.4 2.67(1) 0.31(3) 12.31(1)  057(5)  1.7x10™

Table S11. The parameters obtained by fitting the ac magnetic susceptibilities of
compound 2 in indicated dc field at 1.8 K.

H/kOe yi/cm®mol®  y/cm®mol®  In(z/5s) o R
0.5 7.93(4) 2.43(1) -14.77(1)  0.43(5) 9.3x107
1.0 6.91(3) 2.43(1) -12.32(1)  0.34(1)  2.0x10°
15 5.64(3) 2.43(2) -11.46(1)  0.33(1) 2.3x10°
2.0 4.43(3) 1.60(1) -11.40(1)  0.32(2) 6.8x10°
2.5 3.44(1) 0.95(1) -11.42(3)  0.31(2)  1.4x10°
3.0 2.68(2) 0.43(1) -11.44(4)  0.29(1)  5.1x10°

ar = z [(Zyobs_l’ca] P+ (X = )2]/ Z [/‘{,01)52 + Z”ubszJ

Table S12. The parameters obtained by fitting the ac magnetic susceptibilities of
compound 2 under 1.5 kOe dc field.

T/IK  ydem®mol® o/ cm® mol™ In(z/s) a R®
18 5.64(2) 2.43(1) -11.46(1)  0.33(1)  2.3x10°
1.9 5.49(2) 2.50(1) -11.47(2)  0.33(2)  2.3x10°®
2.0 5.31(2) 2.40(1) -11.46(3)  0.30(2)  1.1x10°
2.1 5.16(3) 2.49(5) -11.47(3)  0.31(1)  1.6x10°
2.2 5.02(3) 2.45(1) -11.52(5)  0.31(1)  1.0x10°
2.3 4.88(4) 2.43(4) -11.58(1) 0.31(3)  8.0x10°
2.4 4.76(1) 2.20(1) -11.75(4)  0.31(3)  1.1x10°
2.5 4.65(3) 2.29(3) -11.80(1)  0.33(1)  7.4x107
2.6 4.53(2) 2.10(1) -11.89(2)  0.32(5)  1.7x10°
2.7 4.43(3) 2.10(1) -11.93(1)  0.31(4)  9.5x107
2.8 4.33(3) 2.20(1) -12.06(3)  0.35(3)  4.9x10°
2.9 4.23(1) 2.10(1) -12.10(3)  0.33(3)  2.1x10°
3.0 4.33(4) 2.10(1) -12.15(1)  0.36(5)  4.9x10°®
3.1 4.04(4) 2.10(1) -12.24(2)  0.34(2)  1.2x10°

af = Y LotV + Lt V1Y [z'obf + /obe
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Figure S1. TG curves of compounds 1 (top), 2 (middle) and 1a (bottom).
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Figure S2. PXRD pattern of 1 refined by TOPAS software. Rwp = 8.78%. Cell
parameters: P-1, a = 9.184 A, b = 9274 A, ¢ = 15196 A , o = 88.052 °, B =
76.383°,y=75.812° V =1218.7 A
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Figure S3. PXRD pattern of 2 refined by TOPAS software. Rwp = 11.72%. Cell
parameters: P-1,a=9.167 A, b=9.253 A, c=15.161 A, 0 =87.967 °, B =
76.471°,y=75.754° V =12115 A®
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Figure S4. PXRD patterns for compounds 1 and 1a, and that simulated from the
single crystal data of 1.
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Figure S5. PXRD pattern for compound 2, and that simulated from the single crystal
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Figure S6. The M vs. H/T plots for 1 (left) and 2 (right) at the indicated temperatures
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Figure S7. Temperature dependent in-phase (ym’) and out-of-phase (yv™) signals of 1
in zero dc field.
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Figure S8. Frequency dependent in-phase (ym’) and out-of-phase (ym’’) signals of 1 in
indicated dc fields at 2 K. The solid lines represent the simulated results.
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Figure S9. Cole-Cole plots of 1 in indicated dc fields at 2 K. The solid lines represent
the simulated results.
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Figure S10. The In(z) vs. H plots for 1 (relaxation A) and 1a, the solid lines represent

the fitting with Eq(5).
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Figure S11. Temperature dependent in-phase (ym’) and out-of-phase (ym’’) signals of
1in 0.5 kOe dc field.
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Figure S12. Frequency dependent in-phase (yv’) and out-of-phase (ym”) signals of 1
in 0.5 kOe dc field. The solid lines represent the simulated results.
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Figure S13. Cole-Cole plots of 1 in 0.5 kOe dc field. The solid lines represent the
simulated results.
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Figure S15. Frequency dependent in-phase (yv’) and out-of-phase (yv”) signals of 1
in 1.5 kOe dc field. The solid lines represent the simulated results.
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Figure S16. Cole-Cole plots of 1 in 1.5 kOe dc field. The solid lines represent the
simulated results.
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in indicated dc fields at 2 K. The solid lines represent the simulated results.
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Figure S27. Temperature dependent in-phase (ym’) and out-of-phase (ym™’) signals of
2 in 1.5 kOe dc field.
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Figure S28. Frequency dependent in-phase (yv’) and out-of-phase (ym”) signals of 2
in 1.5 kOe dc field. The solid lines represent the simulated results.
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Figure S29. Cole-Cole plots of 2 in 1.5 kOe dc field. The solid lines represent the
simulated results.
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Figure S30. The logarithmic magnetization relaxation time (z) versus T plots with
Arrhenius fitting for 2.



@

1312

6 4
o H15/2_) Gll/Z

Intensity / a.u.

380 430 480 530 580 630 680

Wavelength / nm
(b) 3 415nm
| ——571nm
=
<
~~
P
‘0
C N
Q 3 00w
= X A -
= o° 53 S 5
D T AN
O <
240 290 340 390 440
Wavelength / nm

Figure S31. Room-temperature (a) emission and (b) excitation spectra of 1 excited at
349 nm and monitored at 415 nm and 571 nm, respectively. The vertical lines assign
intra-4f self-absorptions.
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Figure S32. Room-temperature (a) emission and (b) excitation spectra of notpHg

ligand.

—— 415 nm
—— 460 N
13— 478 nim
571 nm

Intensity
%
} Z/;

—— absorption

25 300 30 400 450
wavelength / nm

Figure S33. The excitation spectra of 1 at room temperature compared to its
UV-Visible absorption spectrum.
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Figure S34. Room-temperature (a) emission and (b) excitation spectra of 1a excited
at 322 and 349 nm and monitored at X nm, respectively.
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Figure S35. Energy level scheme with ligand emission, Dy** emission and
self-absorption and magnetic relaxation of 1.
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Figure S36. Emission decay curves (18 and 300K) of 1 monitored at 571 nm and
excited at 355 nm. The solid lines represent the data best fit using a single exponential
function. The inset shows the respective regular residual plots (x%es= 1.02x10°, 18 K,
and y%eq = 7.15x10™, 300 K) values for a better judgment of the fits quality.
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Figure S37. Room-temperature emission decay curve of 1a monitored at 571 nm and
excited at 355 nm. The solid line represents the data best fit using a single exponential
function. The inset shows the respective regular residual plot (y%eq=1.62x10) for a
better judgment of the fit quality.
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Figure S38. Emission decay curves of notpHg monitored at 415 nm and 525 nm and
excited at 355 nm. The solid lines represent the data best fit using a single exponential
function. The inset shows the respective regular residual plots (y%es=1.80x10"
415 nm, 32q=1.80x10, 525 nm) values for a better judgment of the fits quality.
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Figure S39. Room-temperature excitation spectra monitored within 410-600 nm and
UV-Visible reflectance spectra of 2.
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Figure S40. Room-temperature emission spectra excited between 265 nm and 430 nm
and UV-Visible reflectance spectra of 2.



