Supporting Information

Synthesis, Structure, and Alkyne Insertion of Mixed-Sandwich Zirconacarborane Alkyl

Dongmei Liu,^{*a*} Zaozao Qiu,^{*b*} and Zuowei Xie*^{*a,b*}

^a Department of Chemistry, Center of Novel Functional Materials and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China

^b Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China

General Procedures. All experiments were performed under an atmosphere of dry dinitrogen with the rigid exclusion of air and moisture using standard Schlenk or cannula techniques, or in a glovebox. Ether and toluene were refluxed over sodium benzophenone ketyl for several days and freshly distilled prior to use. 7-Me₂N(H)CH₂CH₂-7,8-C₂B₉H₁₁,¹ Cp^{''}ZrMe₃,² PhC=CMe,³ PhC=CTMS,⁴ ⁿBuC=CTMS⁵ were prepared according to literature methods. Other chemicals were purchased from either Aldrich or Acros Chemical Co. and used as received unless otherwise specified. ¹H and ¹³C NMR spectra were recorded on a Bruker DPX 300 spectrometer at 300 and 75 MHz, respectively. ¹¹B NMR spectra were recorded on a Varian Inova 400 spectrometer at 128 MHz. All chemical shifts were reported in δ units with references to the residual protons of the deuterated solvents for proton and carbon chemical shifts and to external BF₃ OEt₂ (0.00 ppm) for boron chemical shifts. Infrared spectra were obtained from KBr pellets prepared in the glovebox on a Perkin-Elmer 1600 Fourier transform spectrometer. Elemental analyses were performed by the Shanghai Institute of Organic Chemistry, CAS, China.

Preparation of $[\eta^1:\sigma;\eta^5-\{\text{MeN}(\text{CH}_2)\text{CH}_2\text{CH}_2\}\text{C}_2\text{B}_9\text{H}_{10}]\text{Zr}(\eta^5-\text{Cp''})$ (1). To an Et₂O (25 mL) suspension of Cp''ZrCl₃ (2.04 g, 5.0 mmol) was added an Et₂O solution of MeLi (1.4 M, 10.7 mL, 15.0 mmol) at -78 °C with stirring. The reaction mixture was allowed to slowly warm to -20 °C, and stirred for 2 h. Removal of the solvent under vacuum gave a pale-yellow residue which was extracted with hexane (50 mL). After filtration, the filtrate was concentrated to dryness, affording Cp''ZrMe₃ as a yellow crystalline solid (1.21 g, 3.5 mmol).² A white solid of 7-Me₂N(H)CH₂CH₂-7,8-C₂B₉H₁₁ (0.72 g, 3.5 mmol) was added to a toluene solution (15 mL) of Cp''ZrMe₃ (1.21 g, 3.5 mmol) in portions at -30 °C with stirring. The resultant orange suspension was allowed to warm to room temperature, and stirred overnight. After filtration, the orange filtrate was concentrated to *ca*. 10 mL. Complex **1** was isolated as orange crystals after this solution stood at room temperature for 2 days (1.41 g, 56%). ¹H NMR (benzene- d_6): δ 7.68 (s, 1H), 7.11 (m, 1H), 6.28 (m, 1H) [C₅H₃(TMS)₂], 3.15 (br s, 1H) (cage CH), 2.21 (m, 2H) (CH₂CH₂NMe), 2.08 (s, 3H) (NCH_3) , 2.01 (m, 2H) (CH_2CH_2NMe) , 2.21 (d, J = 6.0 Hz, 1H), 2.19 (d, J = 6.0 Hz, 1H) $(Zr-CH_2)$, 0.28 (s, 9H), -0.04 (s, 9H) [Si(CH₃)₃]. ${}^{13}C{}^{1}H$ NMR (benzene- d_6): δ 132.4, 131.5, 130.7, 129.7, 124.2 [C₅H₃(TMS)₂], 73.2 (Zr-CH₂), 68.2 (CH₂CH₂NMe), 63.7 (cage C), 54.4 (NCH₃), 38.3 (CH_2CH_2NMe) , 1.1, -0.2 [Si $(CH_3)_3$]. ¹¹B{¹H} NMR (benzene- d_6): δ 2.1 (1B), 0.9 (1B), -2.2 (2B), -4.9 (1B), -7.9 (2B), -13.9 (1B), -18.1 (1B). IR (KBr, cm⁻¹): v_{BH} 2545 (vs). Anal. Calcd for C₁₇H₄₀B₉NSi₂Zr (1): C, 40.58; H, 8.01; N, 2.78. Found: C, 40.73; H, 8.08; N, 2.81.

Preparation of $[\eta^1:\sigma:\eta^5-\{\text{MeN}[CH_2(Et)C=C(Et)]CH_2CH_2\}C_2B_9H_{10}]Zr(\eta^5-Cp'')$ (2a). To a toluene (5 mL) solution of 1 (101 mg, 0.2 mmol) was added 3-hexyne (16 mg, 0.2 mmol) at room temperature, and the reaction mixture was stirred at room temperature overnight. After filtration,

the orange filtrate was concentrated to *ca*. 2 mL. Complex **2a** was isolated as orange crystals after this solution stood at room temperature for 3 days (85 g, 73%). ¹H NMR (benzene- d_6): δ 7.94 (s, 1H), 7.11 (m, 1H), 6.20 (m, 1H) [C₃H₃(TMS)₂], 4.44 (br s, 1H) (cage CH), 3.10 (d, J = 15.0 Hz, 1H), 2.09 (d, J = 15.0 Hz, 1H) (MeNCH₂CEt), 3.00 (m, 1H), 2.12 (m, 1H) (CH₂CH₂NMe), 2.35 (m, 1H),1.83 (m, 1H), 1.76 (m, 2H) (CH₂CH₃), 1.45 (s, 3H) (NCH₃), 1.42 (m, 2H) (CH₂CH₂NMe), 0.98 (t, J = 7.5 Hz, 3H), 0.87 (t, J = 7.5 Hz, 3H) (CH₂CH₃), 0.25 (s, 9H), 0.23 (s, 9H) [Si(CH₃)₃]. ¹³C{¹H} NMR (benzene- d_6): δ 193.1 (Zr- C_a), 138.4 (Zr- C_aC_β), 137.8, 131.7, 130.9, 129.7, 121.6 [C_3 H₃(TMS)₂], 88.0, 86.2 (cage C), 67.8 (MeNCH₂CEt), 64.5 (CH₂CH₂NMe), 46.8 (NCH₃), 37.2 (CH₂CH₂NMe), 30.4, 25.1 (CH₂CH₃), 15.8, 13.3 (CH₂CH₃), 1.1, 1.0 [Si(CH₃)₃]. ¹¹B{¹H} NMR (benzene- d_6): δ 2.4 (1B), 0.9 (1B), -1.6 (2B), -3.3 (1B), -5.2 (1B), -8.5 (1B), -12.5 (1B), -16.4 (1B). IR (KBr, cm⁻¹): v_{BH} 2545 (vs). Anal. Calcd for C₂₃H₅₀B₉NSi₂Zr (**2a**): C, 47.20; H, 8.61; N, 2.39. Found: C, 47.24; H, 8.36; N, 2.53.

Preparation of $[η^1: σ: η^5 - {\text{MeN}[CH_2("Pr)C=C("Pr)]CH_2CH_2}C_2B_9H_{10}]Zr(η^5 - Cp'')$ (2b). This complex was prepared as orange crystals from 1 (101 mg, 0.2 mmol) and 4-octyne (22 mg, 0.2 mmol) in toluene (10 mL), using the same procedure reported for 2a: yield 89 mg (73%). ¹H NMR (benzene-*d*₆): δ 7.96 (s, 1H), 7.24 (m, 1H), 6.33 (m, 1H) [C₅*H*₃(TMS)₂], 4.40 (br s, 1H) (cage *CH*), 3.23 (d, *J* = 15.3 Hz, 1H), 2.15 (d, *J* = 15.3 Hz, 1H) (MeNC*H*₂*C*^{*n*}Pr), 3.12 (m, 1H), 2.36 (m, 1H) (CH₂*CH*₂NMe), 2.07 (m, 2H) (*CH*₂CH₂NMe), 1.91 (m, 2H), 1.69 (m, 2H) (*CH*₂CH₂CH₃), 1.60 (s, 3H) (NC*H*₃), 1.46 (m, 4H) (CH₂C*H*₂CH₃), 0.94 (t, *J* = 7.2 Hz, 3H), 0.92 (t, *J* = 7.2 Hz, 3H) (CH₂CH₂CH₃), 0.28 (s, 9H), 0.24 (s, 9H) [Si(*CH*₃)₃]. ¹³C{¹H} NMR (benzene-*d*₆): δ 192.1 (*Zr*-*C*_α), 137.7 (*Zr*-*C*_α*C*_β), 137.3, 131.2, 130.5, 121.1 [*C*₅H₃(TMS)₂], 74.2 (cage *C*), 68.0 (MeNC*H*₂*C*"Pr), 64.1 (CH₂CH₂NMe), 46.3 (NCH₃), 40.2 (CH₂CH₂NMe), 36.8, 34.3 (CH₂CH₂CH₃), 24.1, 21.9 (CH₂CH₂CH₃), 15.4, 14.7 (CH₂CH₂CH₃), 0.8, 0.7 [Si(*CH*₃)₃]. ¹¹B{¹H} NMR (benzene-*d*₆): δ 2.8 (1B), 1.0 (1B), -1.6 (2B), -3.3 (1B), -5.7 (1B), -9.5 (1B), -12.3 (1B), -16.5 (1B). IR (KBr, cm⁻¹): *v* _{BH} 2543 (vs). Anal. Calcd for C₂₅H₅₄B₉NSi₂Zr (**2b**): C, 48.95; H, 8.87; N, 2.28. Found: C, 48.51; H, 8.56; N, 2.35.

Preparation of [η¹:σ: η⁵-{MeN[CH₂(Ph)C=C(Ph)]CH₂CH₂}C₂B₉H₁₀]Zr(η⁵-Cp^{*}) (2c). To a toluene (5 mL) solution of 1 (101 mg, 0.2 mmol) was added diphenylacetylene (36 mg, 0.2 mmol) at room temperature, and the reaction mixture was heated to 70 °C overnight. After filtration, the orange filtrate was concentrated to *ca*. 2 mL. Complex **2c** was collected as orange crystals after this solution stood at room temperature for 4 days (108 mg, 70%). ¹H NMR (benzene-*d*₆): 8.21 (s, 1H), 7.54 (m, 1H), 6.61 (m, 1H) [C₅H₃(TMS)₂], 7.00 (m, 5H), 6.92 (m, 3H), 6.78 (m, 2H) (C₆H₅), 4.67 (br s, 1H) (cage CH), 3.68 (d, *J* = 15.0 Hz, 1H), 2.62 (d, *J* = 15.0 Hz, 1H) [C(Ph)CH₂NMe], 3.38 (m, 1H), 2.15 (m, 1H) (CH₂CH₂NMe), 1.73 (m, 2H) (CH₂CH₂NMe), 1.54 (s, 3H) (NCH₃), 0.19 (s, 9H), 0.04 (s, 9H) [Si(CH₃)₃]. ¹³C{¹H} NMR (benzene-*d*₆): δ 194.5 (Zr-*C*_α), 149.7 (Zr-C_αC_β), 141.7, 140.2, 138.4, 131.7, 130.7, 129.4, 129.3, 127.7, 126.5, 125.6, 125.0, 122.6 [*C*₆H₅ + *C*₅H₃(TMS)₂], 89.8 (cage *C*), 69.3 [C(Ph)*C*H₂NMe], 64.1 (CH₂CH₂NMe), 46.2 (NCH₃), 36.5 (CH₂CH₂NMe), 0.9, 0.6 [Si(CH₃)₃]. ¹¹B{¹H} NMR (benzene-*d*₆): δ 5.2 (1B), -0.2 (2B), -1.6 (2B), -11.2 (2B), -14.1 (2B). IR (KBr, cm⁻¹): *v*_{BH} 2544 (vs). Anal. Calcd for C_{34.5}H₅₄B₉NSi₂Zr (**2c** + 0.5 toluene): C, 56.96; H, 7.48; N, 1.93. Found: C, 57.16; H, 7.54; N, 2.26.

Preparation of $[\eta^1:\sigma:\eta^5-\{\text{MeN}[CH_2(Ph)C=C(Me)]CH_2CH_2\}C_2B_9H_{10}]Zr(\eta^5-Cp'')$ (2d). This complex was prepared as orange crystals from 1 (101 mg, 0.2 mmol) and phenylmethylacetylene (23 mg, 0.2 mmol) in toluene (10 mL), using the same procedure reported for 2c: yield 100 mg (81%). ¹H NMR (benzene- d_6): δ 7.89 (s, 1H), 7.19 (m, 1H), 6.26 (m, 1H) $[C_5H_3(TMS)_2]$, 7.25 (m, 3H), 6.91 (m, 2H) (C_6H_5), 3.98 (br s, 1H) (cage CH), 3.42 (d, J = 15.6 Hz, 1H), 2.44 (d, J = 15.6 Hz, 1H) [MeNCH₂C(Ph)], 3.18 (m, 2H) (CH₂CH₂NMe), 2.19 (m, 2H) (CH_2CH_2NMe) , 1.75 (s, 3H) (NCH₃), 1.47 (s, 3H) [ZrC(CH₃)], 0.28 (s, 9H), 0.22 (s, 9H) [Si(CH₃)₃]. ¹³C{¹H} NMR (benzene-d₆): δ 191.4 (Zr-C_a), 141.5 (Zr-C_aC_β), 137.0, 136.5, 132.4, 130.5, 127.2, 122.3 [C₆H₅ + C₅H₃(TMS)₂], 69.7 (PhCCH₂NMe), 64.4 (CH₂CH₂NMe), 46.4 (NCH₃), 37.5 (CH₂CH₂NMe), 25.4 [ZrC(CH₃)], 0.9, 0.7 [Si(CH₃)₃], cage carbons were not observed. ¹¹B{¹H} NMR (benzene-d₆): δ 2.3 (1B), 0.1 (1B), -1.5 (2B), -3.3 (1B), -5.8 (1B), -9.9 (1B), -12.4 (1B), -16.3 (1B). IR (KBr, cm⁻¹): ν_{BH} 2553 (vs). Anal. Calcd for: C₂₆H₄₈B₉NSi₂Zr (**2d**): C, 50.42; H, 7.81; N, 2.26. Found: C, 50.21; H, 7.55; N, 2.33.

Preparation of $[η^1: σ: η^5 - \{MeN[CH_2(Ph)C=C(TMS)]CH_2CH_2\}C_2B_9H_{10}]Zr(η^5-Cp'')$ (2e). This complex was prepared as orange crystals from 1 (101 mg, 0.2 mmol) and trimethylsilylphenylacetylene (35 mg, 0.2 mmol) in toluene (10 mL), using the same procedure reported for 2c: yield 103 mg (76%). ¹H NMR (pyridine-*d*₅): δ 8.10 (s, 1H), 7.65 (m, 1H), 7.54 (m, 1H) [C₅H₃(TMS)₂], 7.37 (m, 2H), 7.26 (m, 1H), 7.16 (m, 2H) (C₆H₅), 4.58 (d, *J* = 15.0 Hz, 1H), 3.24 (d, *J* = 15.0 Hz, 1H) (PhCCH₂NMe), 4.56 (br s, 1H) (cage CH), 3.85 (m, 1H), 2.63 (m, 1H) (CH₂CH₂NMe), 2.45 (s, 3H) (NCH₃), 2.48 (m, 1H), 2.26 (m, 1H) (CH₂CH₂NMe), 0.45 (s, 9H), 0.34 (s, 9H), -0.03 (s, 9H) [Si(CH₃)₃]. ¹³C{¹H} NMR (pyridine-*d*₅): δ 202.2 (Zr-*C_a*), 153.0 (Zr-C_aC_β), 145.7, 137.0, 132.8, 130.0, 128.3, 127.6, 126.8, 126.3, 124.9 [*C*₆H₅ + *C*₅H₃(TMS)₂], 70.8 (PhCCH₂NMe), 64.8 (CH₂CH₂NMe), 47.3 (NCH₃), 35.8 (CH₂CH₂NMe), 3.1, 0.3, -0.1 [Si(CH₃)₃], cage carbons were not observed. ¹¹B{¹H} NMR (pyridine-*d*₅): δ 1.9 (1B), -2.3 (2B), -4.0 (2B), -9.8 (1B), -11.6 (1B), -16.5 (2B). IR (KBr, cm⁻¹): *v*_{BH} 2558 (vs). Anal. Calcd for C₂₈H₅₄B₉NSi₃Zr (2e): C, 49.64; H, 8.03; N, 2.07. Found: C, 49.63; H, 8.09; N, 1.79.

Preparation of $[\eta^1:\sigma:\eta^5-\{MeN[CH_2(^nBu)C=C(TMS)]CH_2CH_2\}C_2B_9H_{10}]Zr(\eta^5-Cp'')$ (2f). This complex was prepared as orange crystals from 1 (101 mg, 0.2 mmol) and 1-trimethylsilyl-1-hexyne (31 mg, 0.2 mmol) in toluene (10 mL), using the same procedure reported for **2c**: yield 106 mg (81%). ¹H NMR (benzene- d_6): δ 7.34 (s, 1H), 7.20 (m, 1H), 6.45 (m, 1H) [C₃ H_3 (TMS)₂], 4.08 (br s, 1H) (cage CH), 3.40 (d, J = 15.0 Hz, 1H), 2.35 (d, J = 15.0 Hz, 1H) (MeNC H_2 CⁿBu), 2.49 (m, 1H), 2.39 (m, 1H) (CH₂C H_2 NMe), 2.05 (t, J = 6.0 Hz, 2H) (C H_2 CH₂CH₂CH₂CH₃), 1.82 (m, 2H) (C H_2 CH₂NMe), 1.77 (s, 3H) (NC H_3), 1.31 – 1.27 (m, 4H) (CH₂C H_2 CH₂CH₃), 0.96 (t, J = 9.0 Hz, 3H) (CH₂CH₂CH₂CH₂), 0.30 (s, 9H), 0.20 (s, 9H), 0.18 (s, 9H) [Si(C H_3)₃]. ¹³C{¹H} NMR (benzene- d_6): δ 201.7 (Zr- C_a), 152.6 (Zr- C_aC_β), 135.0, 133.2, 131.4, 128.9, 125.4 (C_5 H₃(Si(CH₃)₃)₂), 68.9 (ⁿBuCCH₂NMe), 67.5 (CH₂CH₂NMe), 58.6 (cage C), 50.5 (NCH₃), 40.7 (CH₂CH₂CH₂CH₃), 37.9 (CH₂CH₂NMe), 30.8, 23.5, 14.2 (CH₂CH₂CH₂CH₃), 4.0, 1.0, 0.9 [Si(CH₃)₃]. ¹¹B{¹H} NMR (benzene- d_6): δ 1.4 (1B), -2.1 (2B), -3.7 (1B), -7.4 (2B), -10.4 (1B), -15.2 (2B). IR (KBr, cm⁻¹): ν_{BH} 2548 (vs). Anal. Calcd for C₂₆H₅₈B₉NSi₃Zr (**2f**): C, 47.49; H, 8.89; N, 2.13. Found: C, 47.55; H, 9.02; N, 2.32.

Preparation of $[η^1: σ: η^5 - \{MeN[CH_2("Bu)C=C(H)]CH_2CH_2\}C_2B_9H_{10}]Zr(η^5 - Cp'')$ (3a). This complex was prepared as orange crystals from 1 (101 mg, 0.2 mmol) and 1-hexyne (16 mg, 0.2 mmol) in toluene (10 mL), using the same procedure reported for 2a: yield 95 mg (81%). ¹H NMR (benzene-*d*₆): δ 7.81 (s, 1H), 6.46 (m, 1H), 6.13 (m, 1H) [C₃H₃(TMS)₂], 4.85 (s, 1H) (Zr-C*H*), 3.94 (br s, 1H) (cage C*H*), 3.07 (d, *J* = 13.5 Hz, 1H), 2.12 (d, *J* = 13.5 Hz, 1H) (MeNCH₂C^{*n*}Bu), 2.47 (m, 2H) (CH₂CH₂NMe), 2.28 (m, 2H) (CH₂CH₂NMe), 1.55 (s, 3H) (NCH₃), 1.31 - 0.99 (m, 6H) ((CH₂)₃CH₃), 0.97 (t, *J* = 6.9 Hz, 3H) [(CH₂)₃CH₃], 0.34 (s, 9H), 0.19 (s, 9H) [Si(CH₃)₃]. ¹³C{¹H} NMR (benzene-*d*₆): δ 181.9 (Zr-C_α), 143.4 (Zr-C_αC_β), 134.6, 131.9, 131.5, 125.8, 123.2 [C₃H₃(TMS)₂], 69.6 (^{*n*}BuCCH₂NMe), 66.3 (CH₂CH₂NMe), 48.6 (NCH₃), 45.3 (CH₂CH₂CH₂CH₃), 38.7 (CH₂CH₂NMe), 30.4, 23.5 14.6 (CH₂CH₂CH₂CH₃), 1.2, 0.6 [Si(CH₃)₃], cage carbons were not observed. ¹¹B{¹H} NMR (benzene-*d*₆): δ -0.4 (2B), -2.8 (2B), -6.7 (1B), -9.8 (1B), -11.5 (1B), - -16.5 (2B). IR (KBr, cm⁻¹): *v*_{BH} 2547 (vs). Anal. Calcd for C₂₃H₅₀B₉NSi₂Zr (**3a**): C, 47.20; H, 8.61; N, 2.39. Found: C, 47.11; H, 9.01; N, 2.55.

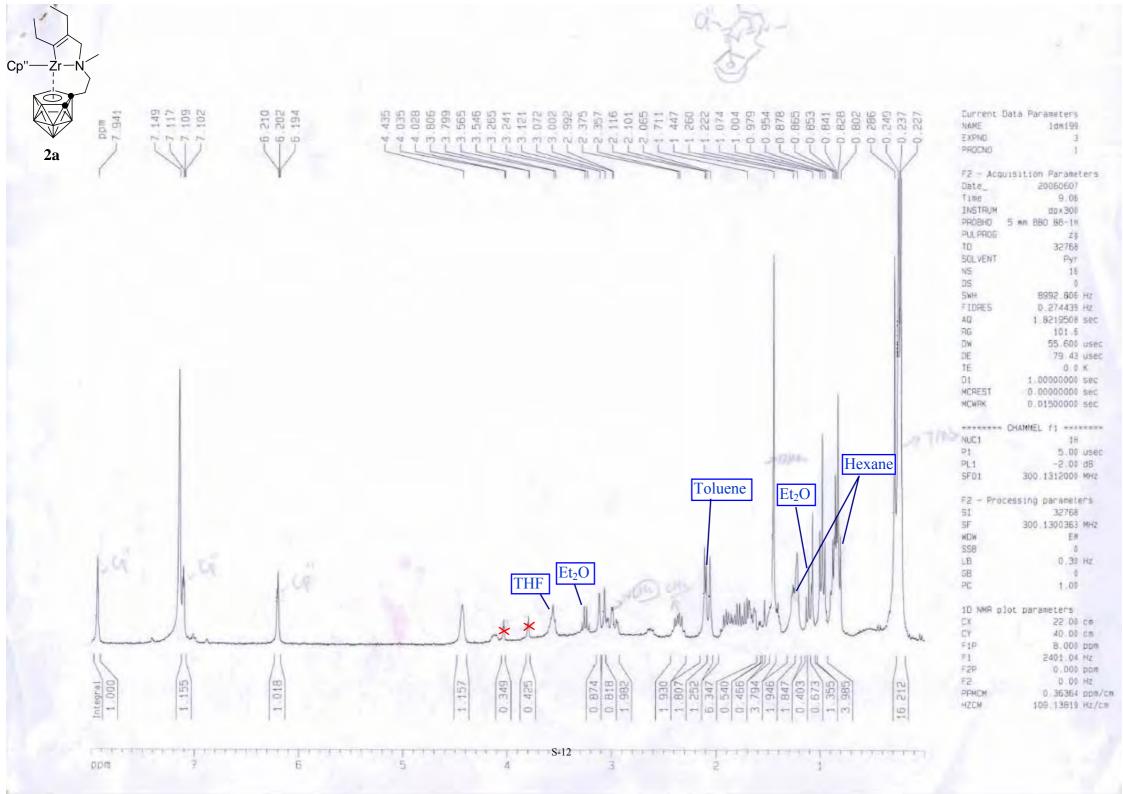
Preparation of [η¹:σ:η⁵-{MeN[CH₂(Ph)C=C(H)]CH₂CH₂}C₂B₉H₁₀]Zr(η⁵-Cp^{*}) (3b). This complex was prepared as orange crystals from 1 (101 mg, 0.2 mmol) and phenylacetylene (20 mg, 0.2 mmol) in toluene (10 mL), using the same procedure reported for **2a**: yield 91 mg (75%). ¹H NMR (benzene-*d*₆): δ 7.88 (s, 1H), 7.47 (m, 1H), 6.11 (m, 1H) [C₅H₃(TMS)₂], 7.22 (m, 2H), 7.09 (m, 3H) (C₆H₅), 7.07 (s, 1H) (Zr-CH), 3.90 (br s, 1H) (cage CH), 3.45 (d, *J* = 15.0 Hz, 1H), 2.85 (d, *J* = 15.0 Hz, 1H) (MeNCH₂CPh), 2.56 (m, 1H), 2.19 (m, 1H) (CH₂CH₂NMe), 1.77 (m, 1H), 1.59 (m, 1H) (CH₂CH₂NMe), 1.53 (s, 3H) (NCH₃), 0.32 (s, 9H), 0.16 (s, 9H) [Si(CH₃)₃]. ¹³C{¹H} NMR (benzene-*d*₆): δ 187.5 (Zr-C_α), 141.8 (Zr-C_αC_β), 140.1, 135.3, 132.3, 131.0, 129.2, 127.8, 125.2, 123.4, 122.3 [C₆H₅ + C₅H₃(TMS)₂], 68.6 (PhCCH₂NMe), 65.9 (CH₂CH₂NCH₃), 59.3 (cage C), 47.9 (NCH₃), 38.3 (CH₂CH₂NMe), 1.1, 0.5 [Si(CH₃)₃]. ¹¹B{¹H} NMR (benzene-*d*₆): δ -0.2 (2B), -2.4 (2B), -6.3 (2B), -9.5(2B), -15.9 (1B). IR (KBr, cm⁻¹): *v*_{BH} 2550 (vs). Anal. Calcd for C₂₅H₄₆B₉NSi₂Zr (**3b**): C, 49.60; H, 7.66; N, 2.31. Found: C, 49.15; H, 7.60; N, 2.46.

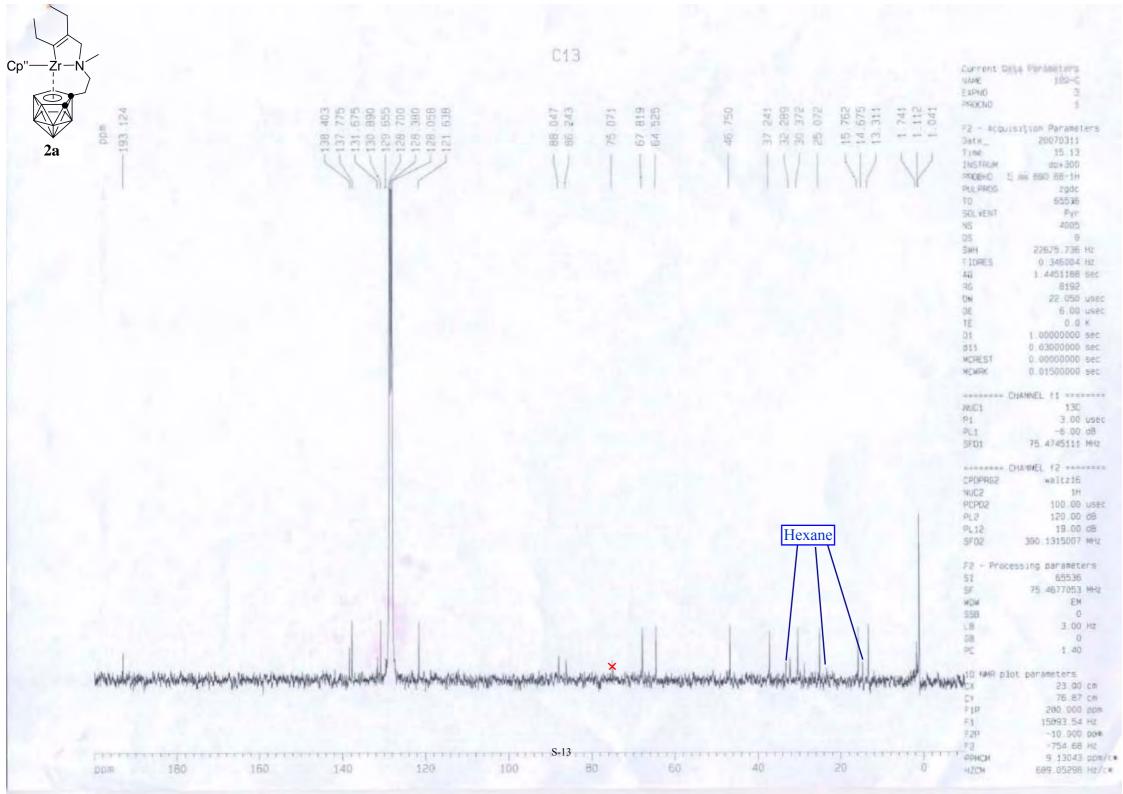
Preparation of $[η^1: σ: η^5 - \{MeN[CH_2(H)C=C(TMS)]CH_2CH_2\}C_2B_9H_{10}]Zr(η^5-Cp'')$ (3c). This complex was prepared as orange crystals from 1 (101 mg, 0.2 mmol) and trimethylsilylacetylene (20 mg, 0.2 mmol) in toluene (10 mL), using the same procedure reported for 2a: yield 94 mg (78%). ¹H NMR (benzene-*d*₆): δ 7.63 (s, 1H), 6.86 (m, 1H), 6.71 (m, 1H) $[C_5H_3(TMS)_2]$, 6.43 (dd, *J* = 1.5 and 3.0 Hz, 1H) (CH₂CHCTMS), 4.10 (br s, 1H) (cage CH), 3.05 (dd, *J* = 1.5 and 15.0 Hz, 1H), 2.15 (dd, *J* = 3.0 and 15.0 Hz, 1H) (MeNCH₂CH), 2.73 (m, 2H) (CH₂CH₂NMe), 1.60 (m, 2H) (CH₂CH₂NMe) 1.47 (s, 3H) (NCH₃), 0.34 (s, 9H), 0.21 (s, 9H), 0.12 (s, 9H) [Si(CH₃)₃]. ¹³C{¹H} NMR (benzene-*d*₆): δ 211.7 (ZrC_α), 140.3 (ZrC_αC_β), 137.1, 133.1, 132.2, 129.4, 129.2 [C₅H₃(TMS)₂], 66.9 (HCCH₂NMe), 64.5 (CH₂CH₂NMe), 51.9 (cage C), 46.9 (NCH₃), 36.8 (CH₂CH₂NMe), 1.2, 0.9, -0.8 [Si(CH₃)₃]. ¹¹B{¹H} NMR (benzene- d_6): δ 2.2 (1B), -2.7 (3B), -3.7 (1B), -6.5 (1B), -9.6 (1B), -13.4 (1B), -16.7 (1B). IR (KBr, cm⁻¹): v_{BH} 2522 (vs). Anal. Calcd for C₂₂H₅₀B₉NSi₃Zr (**3c**): C, 43.94; H, 8.38; N, 2.33. Found: C, 43.80; H, 7.98; N, 1.95.

Preparation of (η^5 -Cp'')[η^1 : η^5 -(Me₂NCH₂CH₂)C₂B₉H₁₀]Zr[C=C(^{*i*}Bu)] (4). Complex 4 was prepared as orange crystals from 1 (101 mg, 0.2 mmol) and 3,3-dimethyl-1-butyne (16 mg, 0.2 mmol) in toluene (10 mL), using the same procedure reported for 2a: yield 95 mg (75%). ¹H NMR (benzene-*d*₆): δ 7.50 (s, 1H), 7.06 (m, 1H), 5.64 (m, 1H) [C₅H₃(TMS)₂], 5.12 (br s, 1H) (cage CH), 3.31 (m, 2H) (CH₂CH₂NMe₂), 2.26 (m, 1H), 1.85 (m, 1H) (CH₂CH₂NMe₂), 2.05 (s, 3H), 1.44 (s, 3H) [N(CH₃)₂], 1.08 (s, 9H) [C(CH₃)₃], 0.38 (s, 9H), 0.34 (s, 9H) [Si(CH₃)₃]. ¹³C{¹H} NMR (benzene-*d*₆): δ 131.9, 131.4, 129.6, 126.6, 126.0, 125.6 [C₅H₃(TMS)₂ + ZrC_α], 90.2 (ZrC_αC_β), 65.0 (CH₂CH₂NMe₂), 59.3 (cage C), 53.3, 47.7 [N(CH₃)₂], 36.7 (CH₂CH₂NMe), 31.2 [C(CH₃)₃], 29.8 [C(CH₃)₃], 1.3, 1.4 [Si(CH₃)₃]. ¹¹B{¹H} NMR (benzene-*d*₆): δ 2.2 (1B), -0.5 (1B), -1.9 (2B), -3.8 (1B), -6.4 (1B), -9.5 (1B), -12.6 (1B), -16.7 (1B). IR (KBr, cm⁻¹): *v*_{BH} 2557 (vs). Anal. Calcd for C_{26.5}H₅₄B₉NSi₂Zr (**4** + 0.5toluene): C, 50.41; H, 8.62; N, 2.22. Found: C, 50.28; H, 8.14; N, 1.79.

Reaction of 1 with Alkene. A Representative Procedure. To a toluene (5 mL) solution of **1** (101 mg, 0.2 mmol) was added 1-hexene (42 mg, 0.5 mmol) at room temperature, and the reaction mixture was stirred at room temperature overnight. A portion of solution (0.5 mL) was taken from this mixture, which was subject to ¹H NMR analysis after replacing toluene with benzene- d_6 . The result showed that it was still **1** and no insertion product was observed. The remaining reaction mixture was then heated at 100 °C for 24 h. The ¹H NMR analyses suggested that **1** remained intact and no product was found.

X-ray Structure Determination. All single crystals were immersed in Paraton-N oil and sealed under N₂ in thin-walled glass capillaries. Data were collected at 293 K on a Bruker SMART APEX CCD diffractometer using Mo K α radiation (0.71073 Å). An empirical absorption correction was applied using the SADABS program.⁶ All structures were solved by direct methods and subsequent Fourier difference techniques and refined anisotropically for all non-hydrogen atoms by full-matrix least-squares on F^2 using the SHELXTL program package.⁷ All hydrogen atoms were geometrically fixed using the riding model. Details of the crystal structures were deposited in the Cambridge Crystallographic Data Centre with CCDC-1041216–1041224 for **1**, **2a**, **2c–f**, **3b**, **3c** and **4**.


References


- 1 (a) M.-S. Cheung, H.-S. Chan and Z. Xie, *Organometallics*, 2005, 24, 5217; (b) M.-S. Cheung, H.-S. Chan and Z. Xie, *Dalton Trans.*, 2005, 2375.
- 2 S. J. Lancaster, O. B. Robinson, M. Bochmann, S. J. Coles and M. B. Hursthouse, *Organometallics*, 1995, 14, 2456.
- 3 H. M. Weiss, K. M. Touchette, S. Angell and J. Khan, Org. Biomol. Chem., 2003, 1, 2152.
- 4 P. C. B. Page and Rosenthal, S. *Tetrahedron*, 1990, 46, 2573.
- 5 H. J. Bestmann, T. Zeibig and O. Vostrowsky, *Synthesis*, 1990, 1039.
- G. M. Sheldrick, SADABS: Program for Empirical Absorption Correction of Area Detector
 Data. University of Göttingen: Germany, 1996.
- G. M. Sheldrick, SHELXTL 5.10 for Windows NT: Structure Determination Software
 Programs. Bruker Analytical X-ray systems, Inc.: Madison, Wisconsin, USA, 1997.

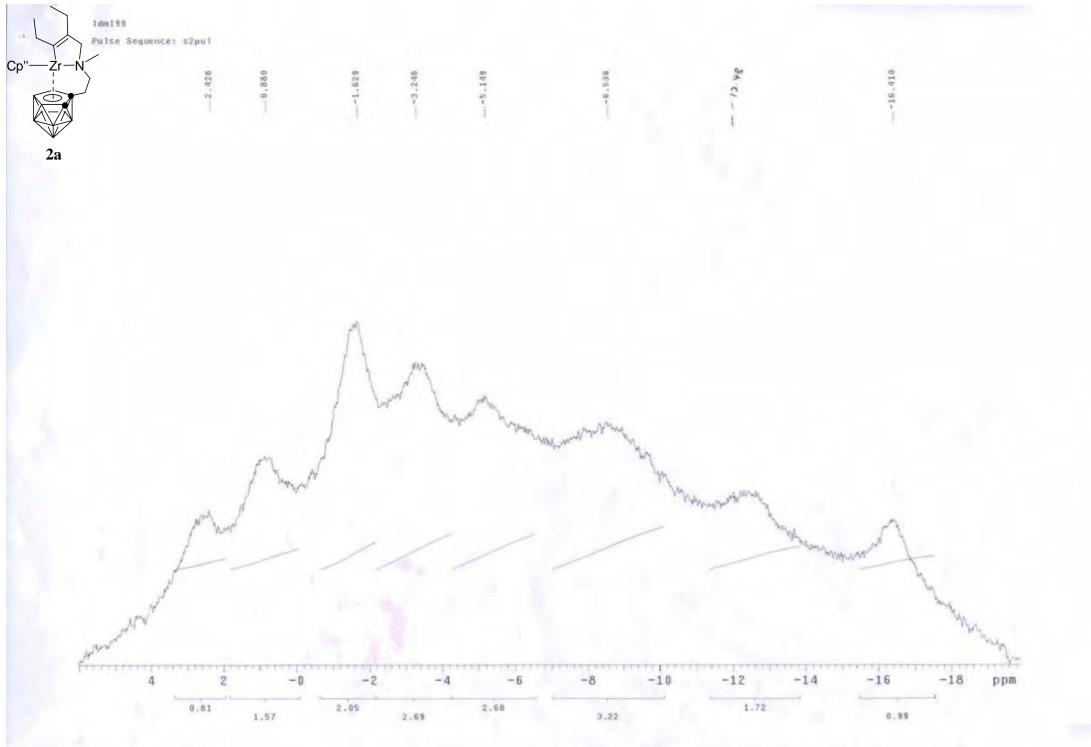
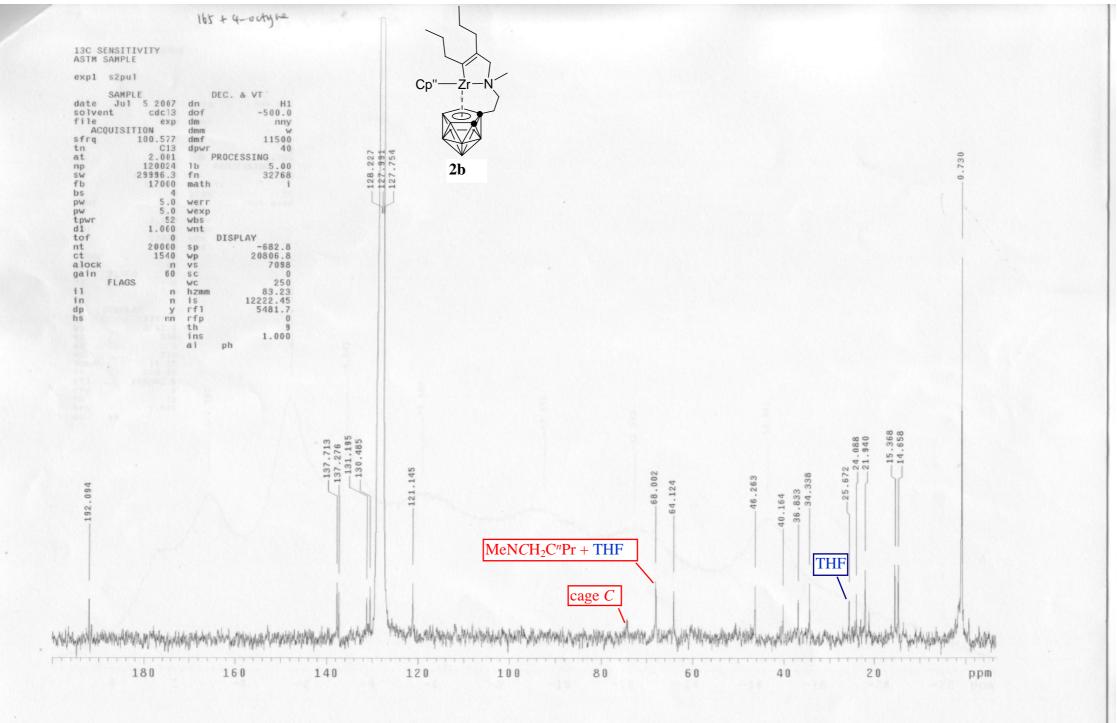
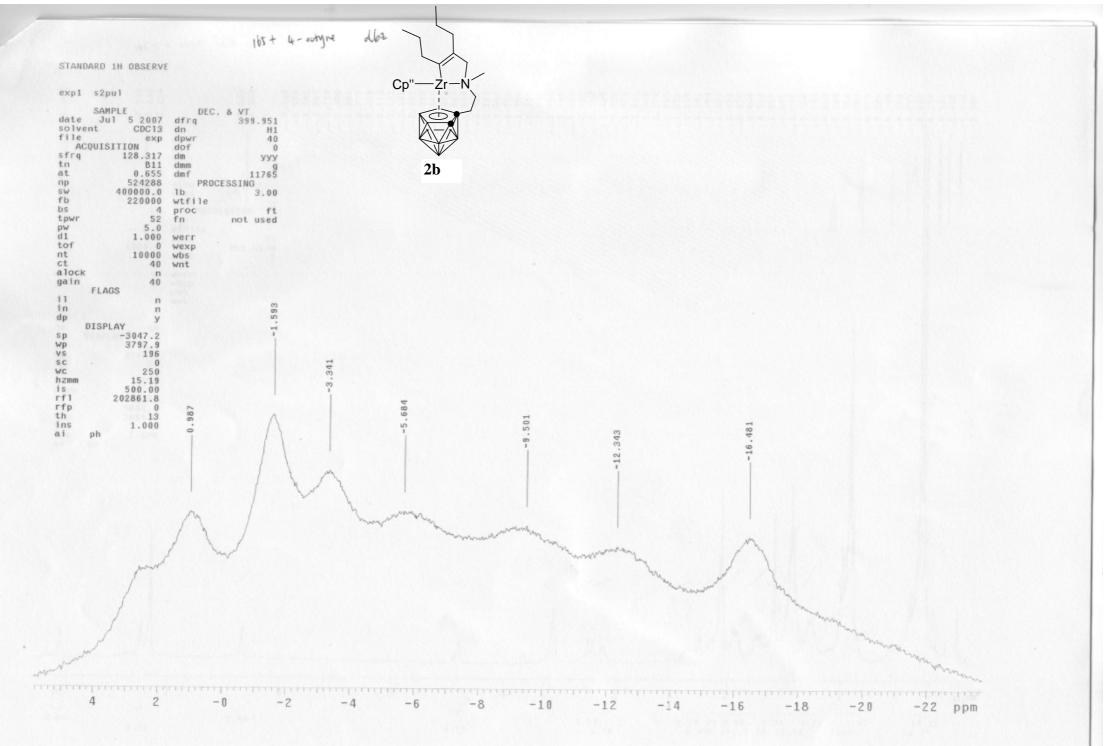
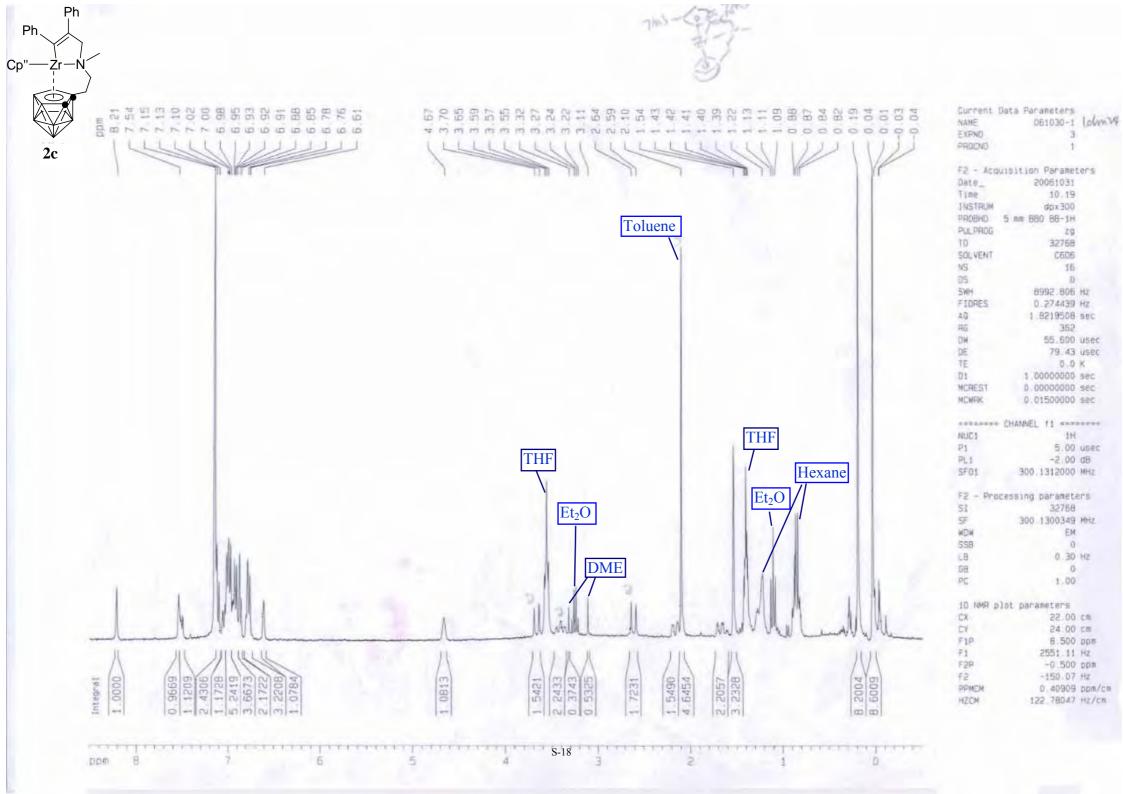
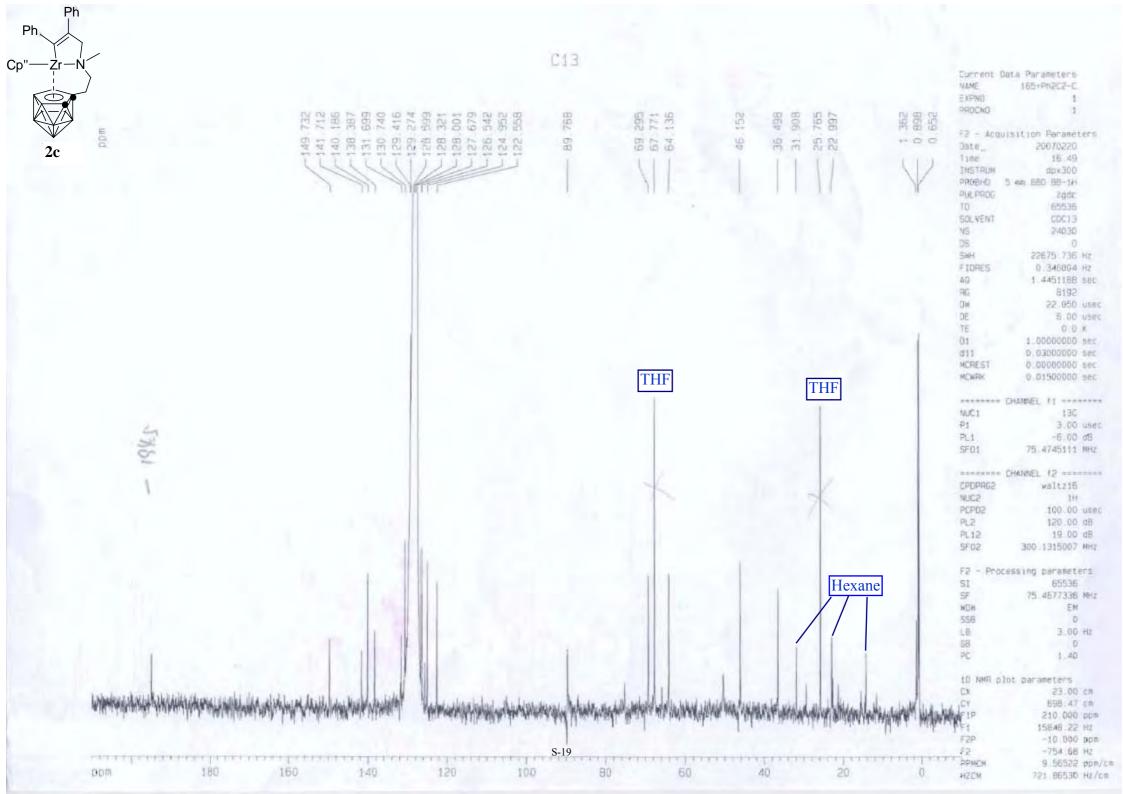

	1	2a	$2c \cdot C_7 H_8$	2d
formula	$C_{17}H_{40}B_9N$ -	$C_{23}H_{50}B_9N$ -	C ₃₈ H ₅₆ B ₉ N-	$C_{26}H_{48}B_9N$
	Si ₂ Zr	Si ₂ Zr	Si ₂ Zr	Si ₂ Zr
cryst size (mm)	0.50 x 0.40	0.60 x 0.35	0.24 x 0.20	0.40 x 0.30
	x 0.30	x 0.25	x 0.14	x 0.20
fw	503.2	585.3	771.5	619.3
cryst syst	monoclinic	monoclinic	triclinic	triclinic
space group	$P2_{1}/c$	$P2_{1}/c$	<i>P</i> (-1)	<i>P</i> (-1)
<i>a</i> , Å	15.927(3)	19.577(3)	10.175(2)	10.199(2)
b, Å	9.976(2)	9.974(1)	11.110 (2)	11.637(2)
<i>c</i> , Å	17.407(4)	16.926(2)	22.337(4)	15.352(2)
α , deg	90	90	91.67 (1)	80.63(1)
β , deg	101.14(1)	99.29 (1)	91.91 (1)	74.97(1)
γ, deg	90	90	114.03 (1)	76.18(1)
$V, Å^3$	2713.7(9)	3261.6(7)	2302.5(7)	1698.8(4)
Z	4	4	2	2
$D_{\rm calcd},{ m Mg/m}^3$	1.232	1.192	1.113	1.211
radiation (λ), Å	Μο Κα	Μο Κα	Μο Κα	Μο Κα
	(0.71073)	(0.71073)	(0.71073)	(0.71073)
2θ range, deg	2.6 to 56.8	4.2 to 56.0	4.0 to 50.0	2.8 to 50.0
μ , mm ⁻¹	0.500	0.425	0.316	0.412
F(000)	1048	1232	808	648
no. of obsd reflns	6716	7858	7965	5942
no. of params refnd	271	325	496	352
goodness of fit	1.034	1.067	0.956	1.065
R1	0.051	0.034	0.075	0.037
wR2	0.119	0.088	0.220	0.090

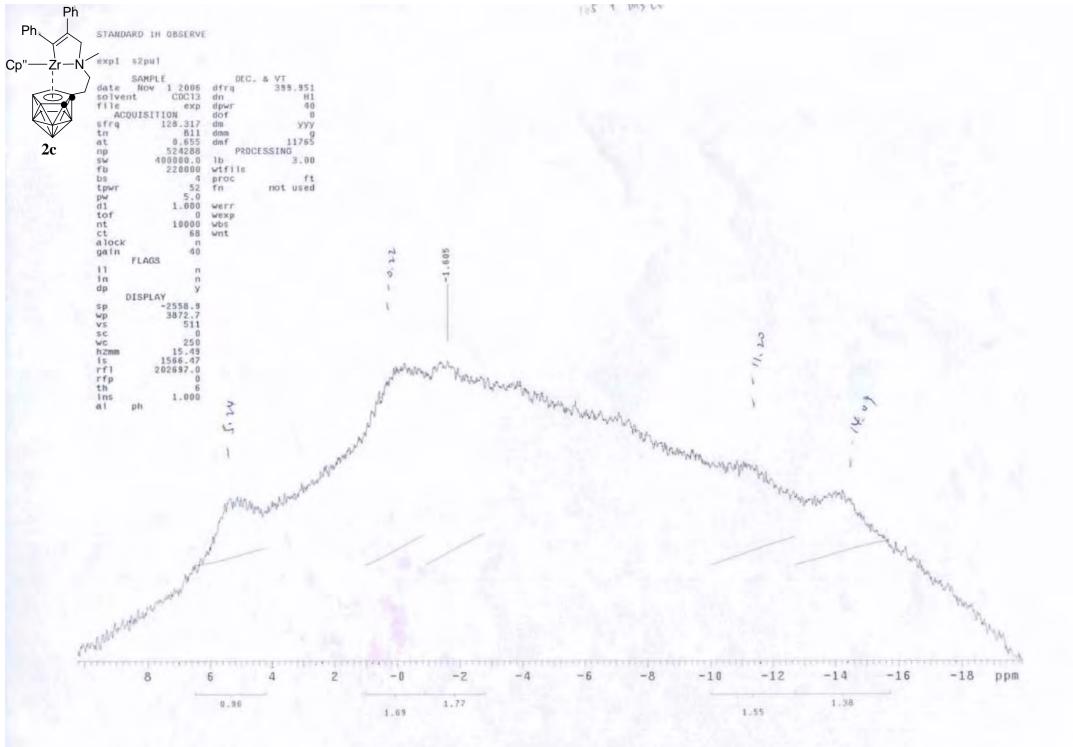
Table S1 Crystal data and summary of data collection and refinement.

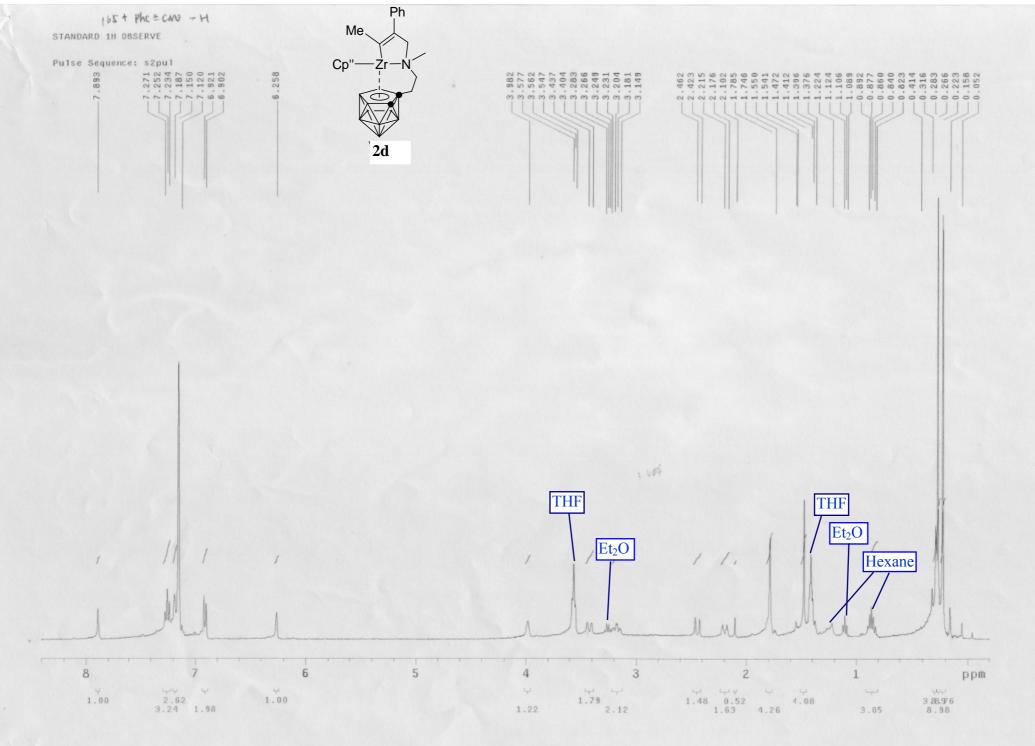

	2e	2f	3b	3c	4 •0.5C ₇ H ₈
formula	C ₂₈ H ₅₄ B ₉ N-	C ₂₆ H ₅₈ B ₉ N-	C ₂₅ H ₄₆ B ₉ N-	C ₂₂ H ₅₀ B ₉ N-	C _{26.5} H ₅₄ B ₉ N
	Si ₃ Zr	Si ₃ Zr	Si ₂ Zr	Si ₃ Zr	-Si ₂ Zr
cryst size (mm)	0.40 x 0.30	0.50 x 0.30	0.24 x 0.20	0.50 x 0.30	0.30 x 0.20
	x 0.20	x 0.20	x 0.18	x 0.20	x 0.20
fw	677.5	657.5	605.3	601.4	631.4
cryst syst	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic
space group	$P2_{1}/c$	$P2_{1}/n$	$P2_{1}/c$	$P2_{1}/c$	<i>P</i> 2 ₁ /c
<i>a</i> , Å	19.530(2)	18.371(2)	10.720(1)	11.055(4)	10.909 (1)
b, Å	10.208(1)	10.614(1)	17.942(2)	30.190(9)	9.538(1)
<i>c</i> , Å	20.640(2)	20.465(2)	16.946(2)	10.338(3)	34.342(3)
α , deg	90	90	90	90	90
β , deg	115.68(1)	115.75(1)	96.34(1)	107.93(6)	92.43(1)
γ, deg	90	90	90	90	90
V, Å ³	3708.2(8)	3594.1(5)	3239.4(7)	3283.0(2)	3570.1(6)
Z	4	4	4	4	4
$D_{\text{calcd}}, \text{Mg/m}^3$	1.214	1.215	1.241	1.217	1.175
radiation (λ), Å	Μο Κα				
	(0.71073)	(0.71073)	(0.71073)	(0.71073)	(0.71073)
2θ range, deg	2.2 to 56.0	2.5 to 50.0	3.3 to 50.0	2.7 to 56.0	2.4 to 50.0
μ , mm ⁻¹	0.414	0.425	0.430	0.459	0.393
<i>F</i> (000)	1424	1392	1264	1264	1332
no. of obsd reflns	8947	6332	5635	7855	6279
no. of params refnd	379	361	344	325	370
goodness of fit	0.986	1.055	1.005	1.064	1.067
R1	0.052	0.045	0.080	0.044	0.049
wR2	0.125	0.105	0.175	0.109	0.121

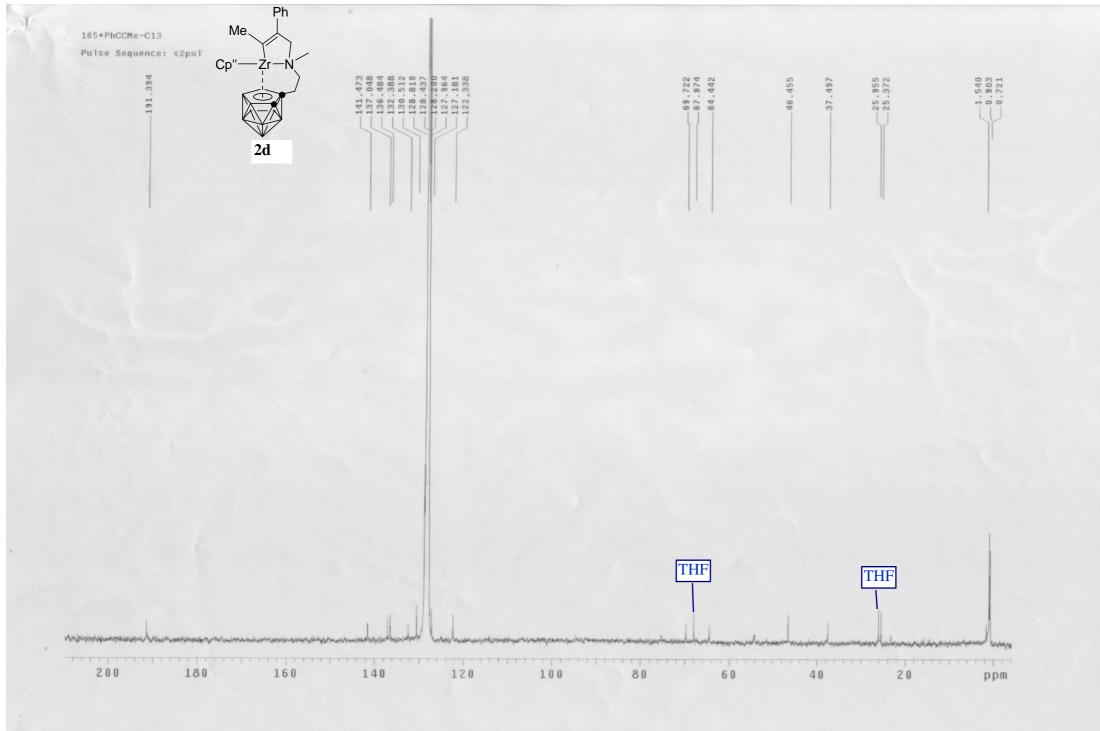


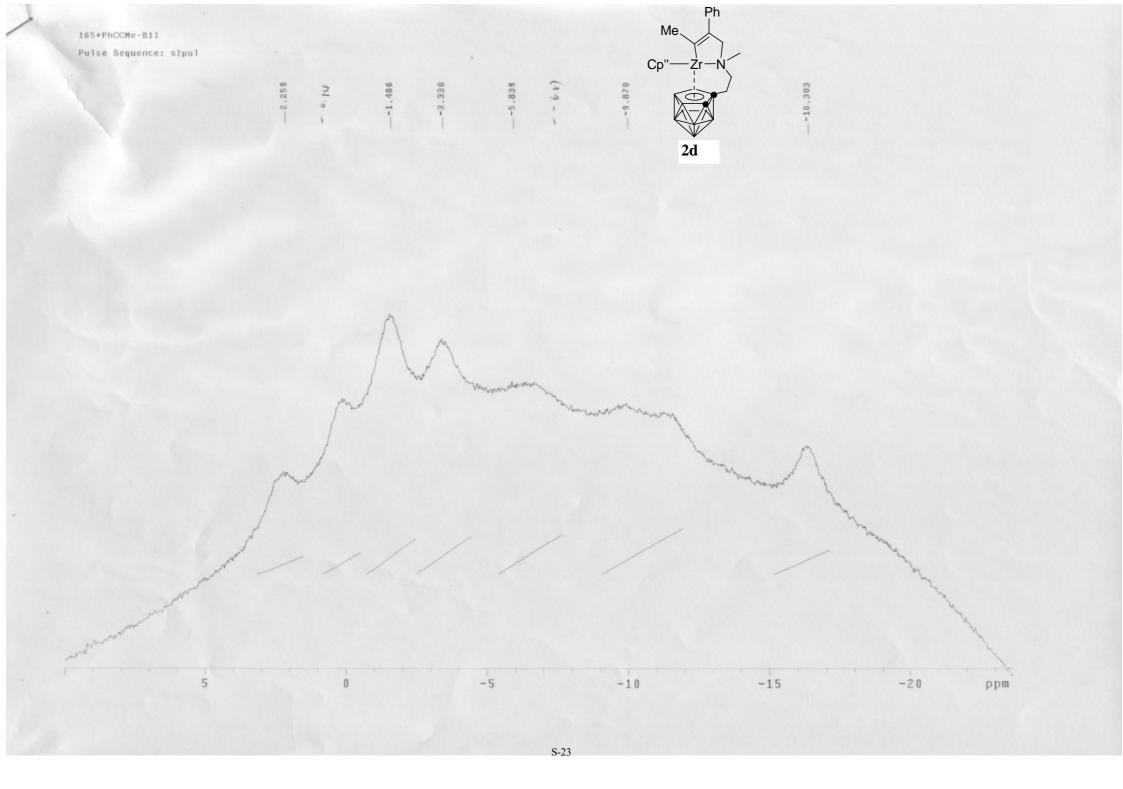


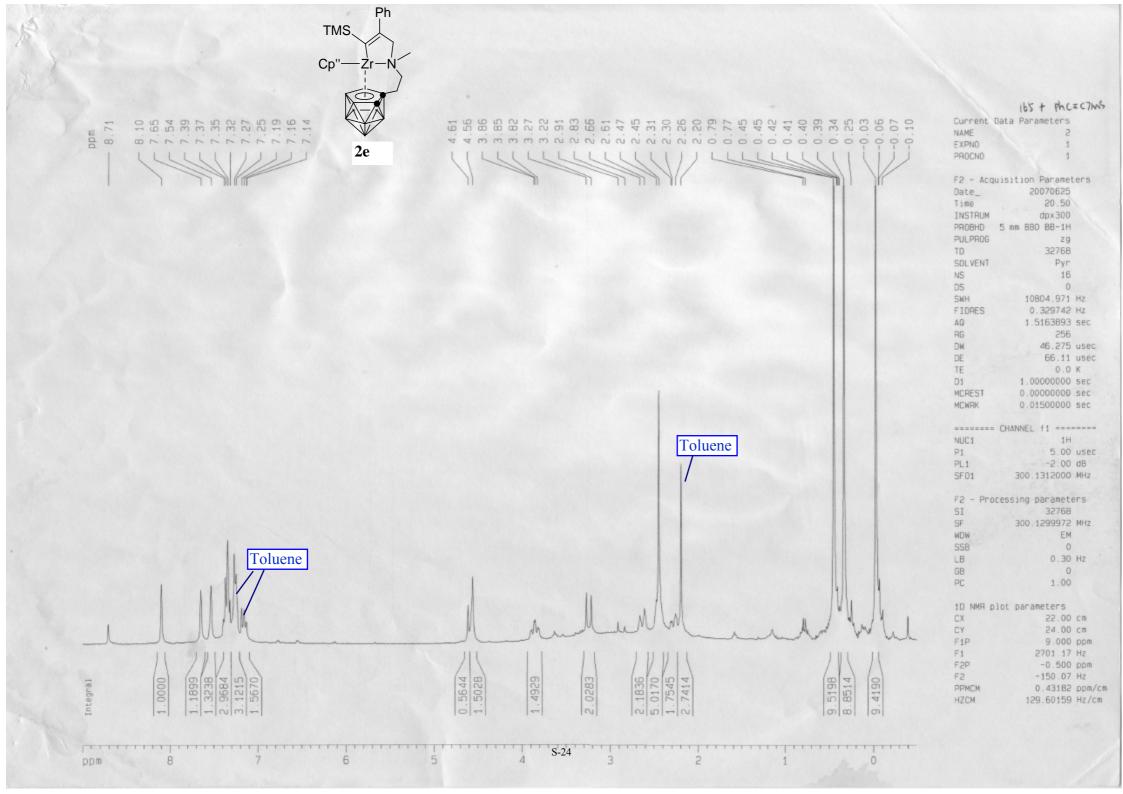


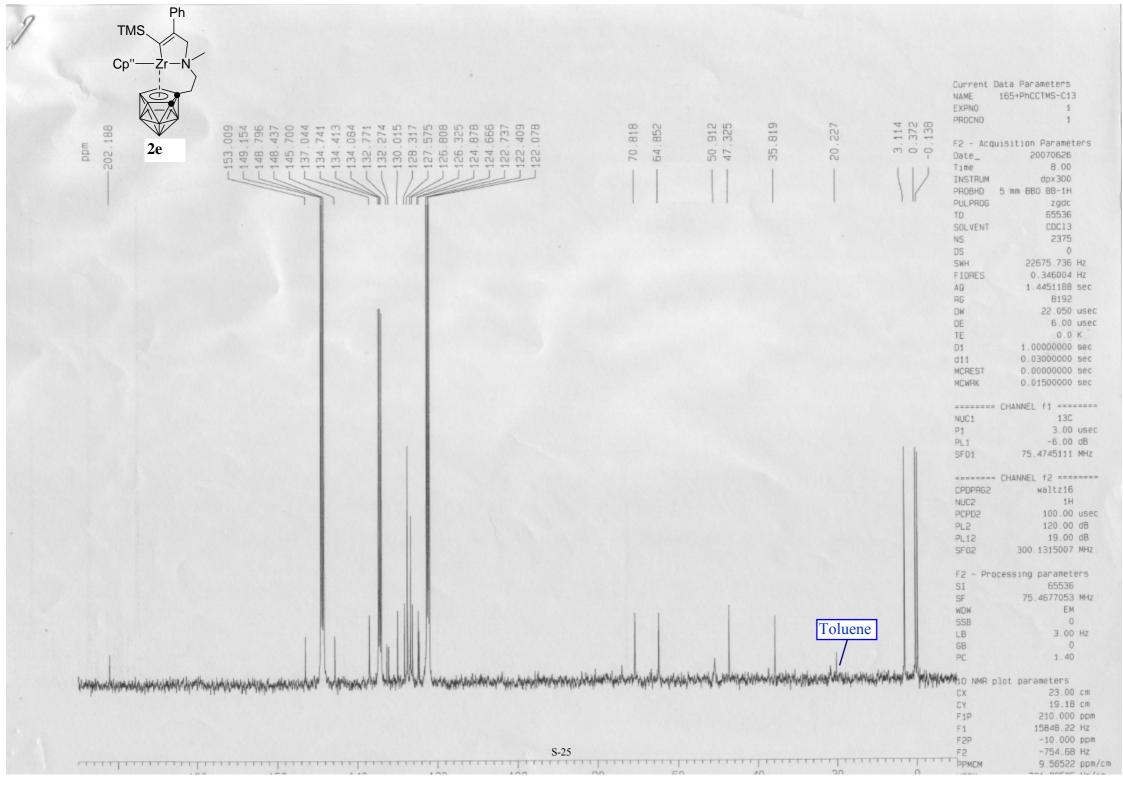


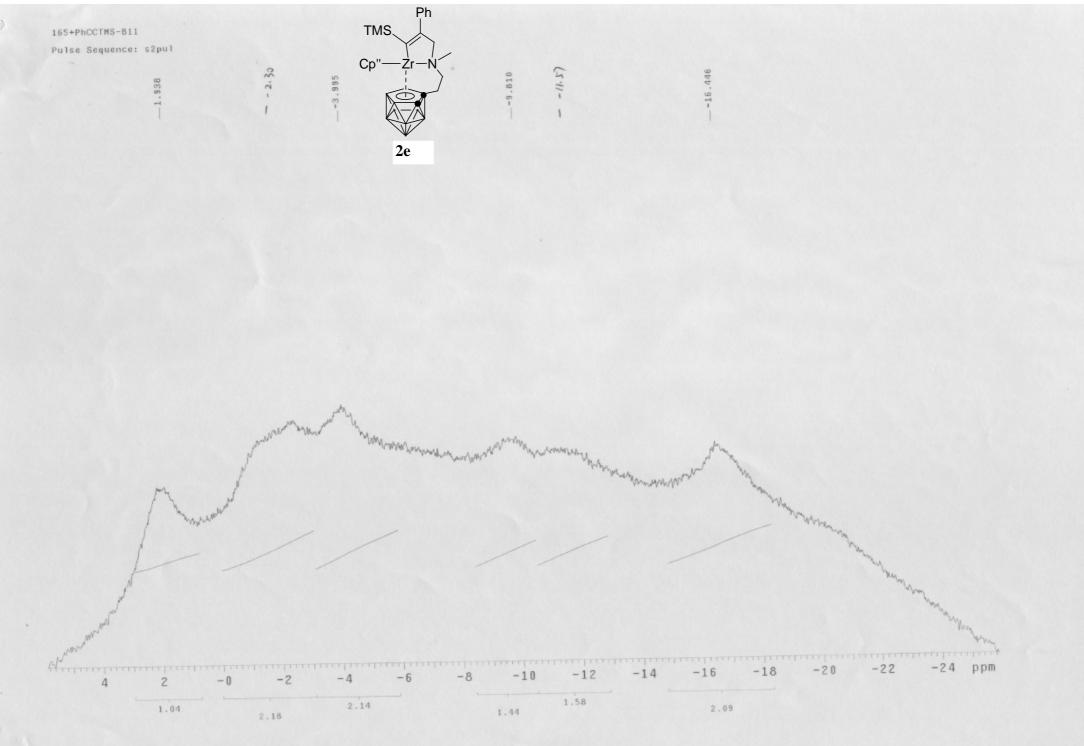


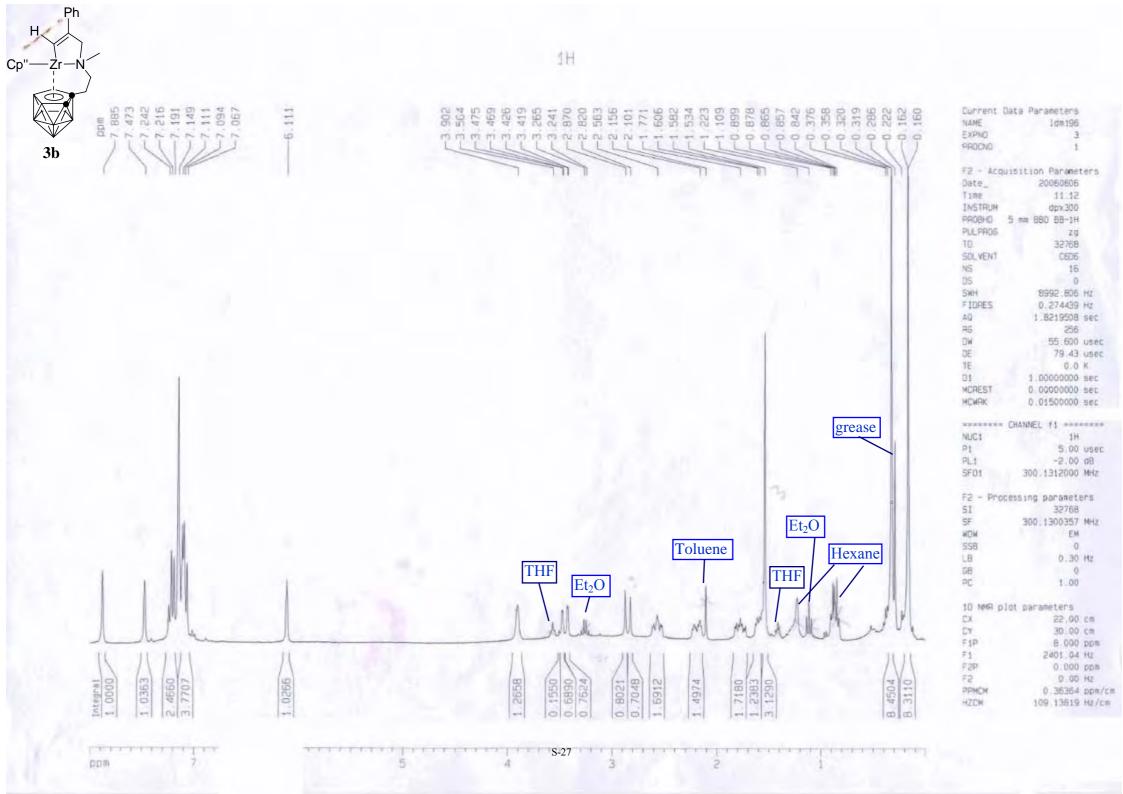


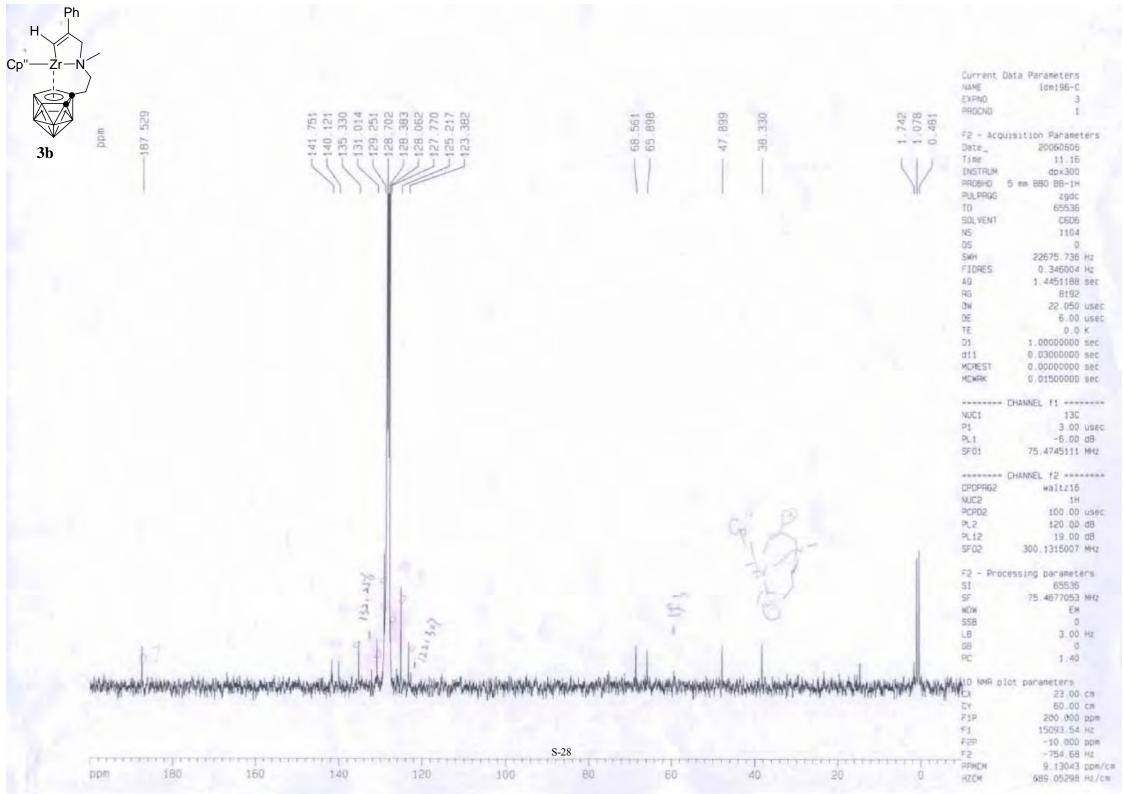


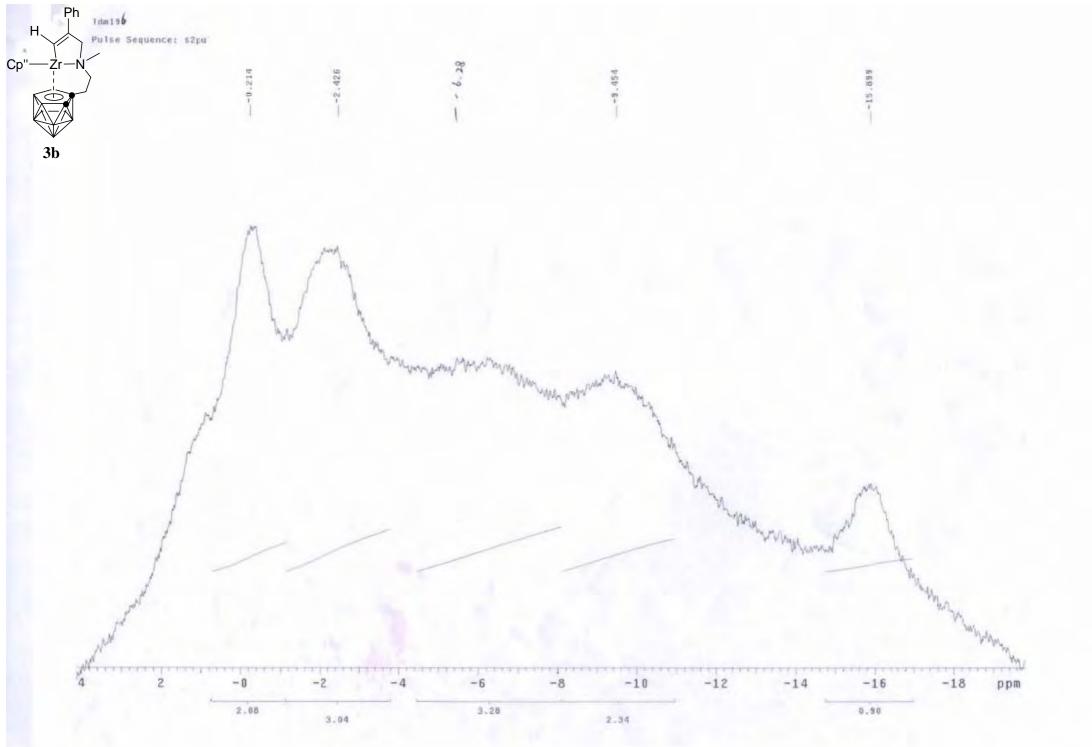


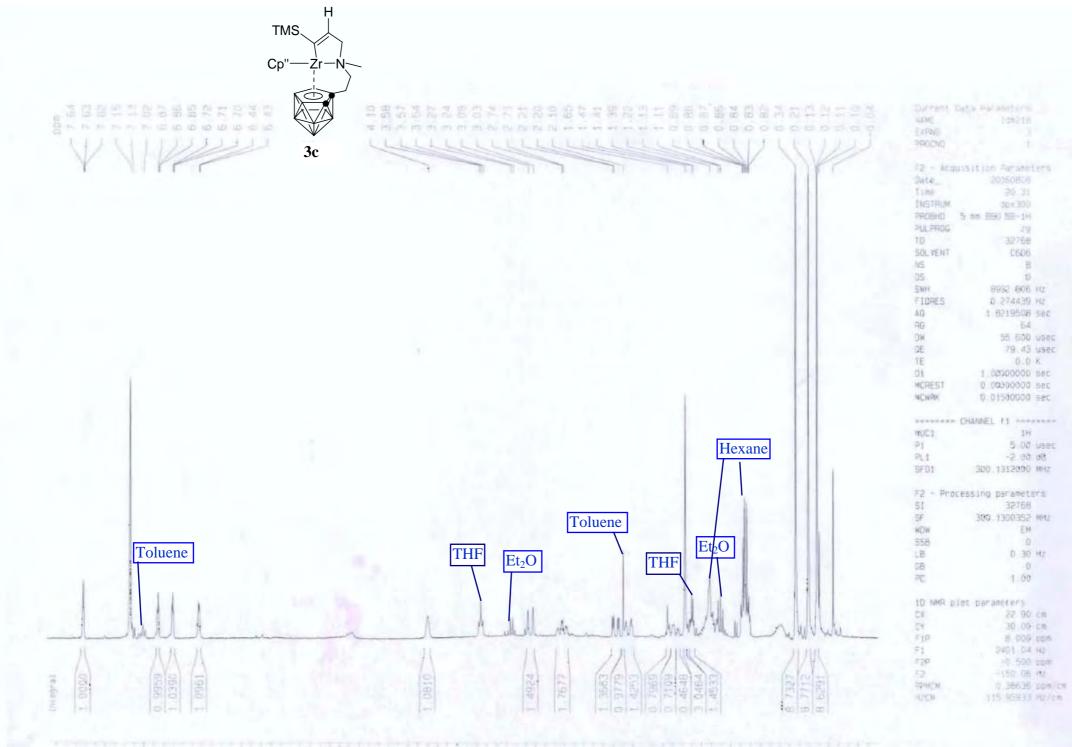


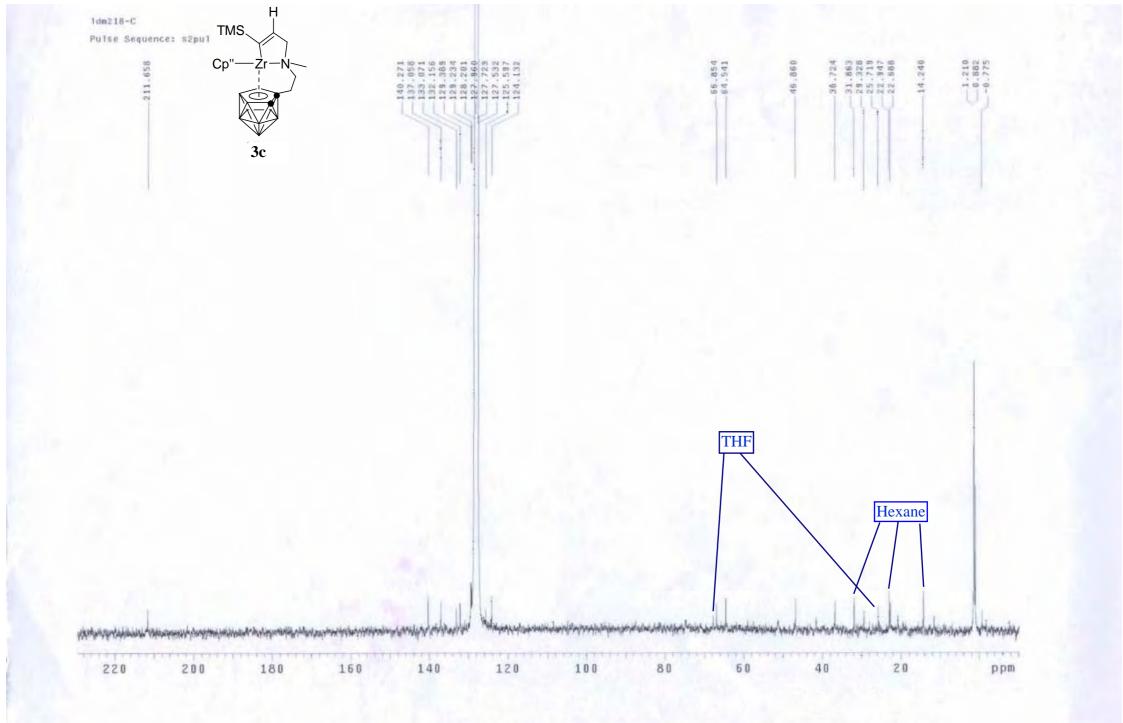

1

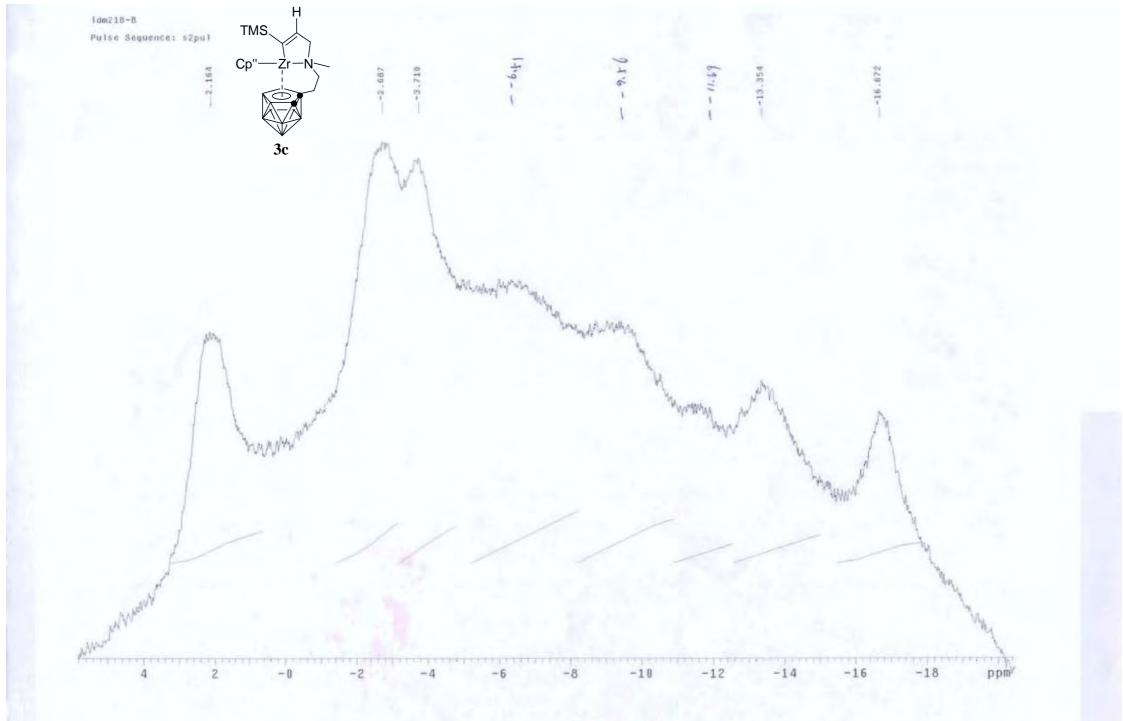


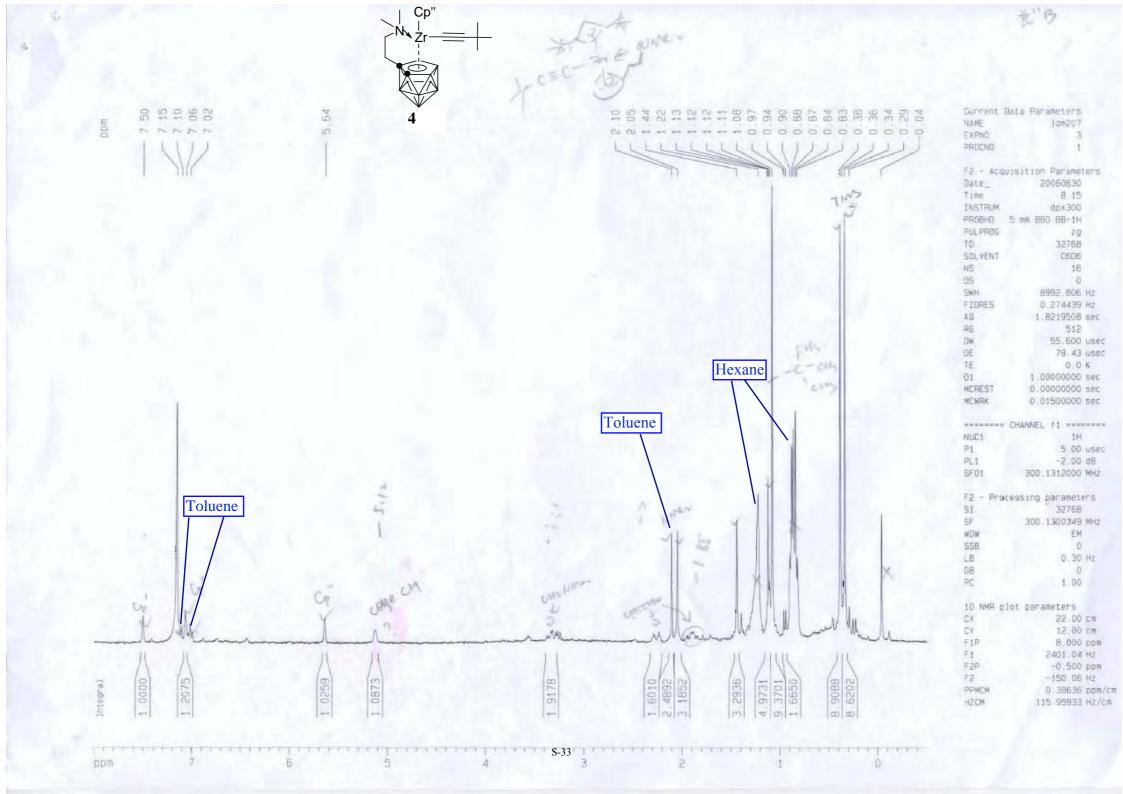


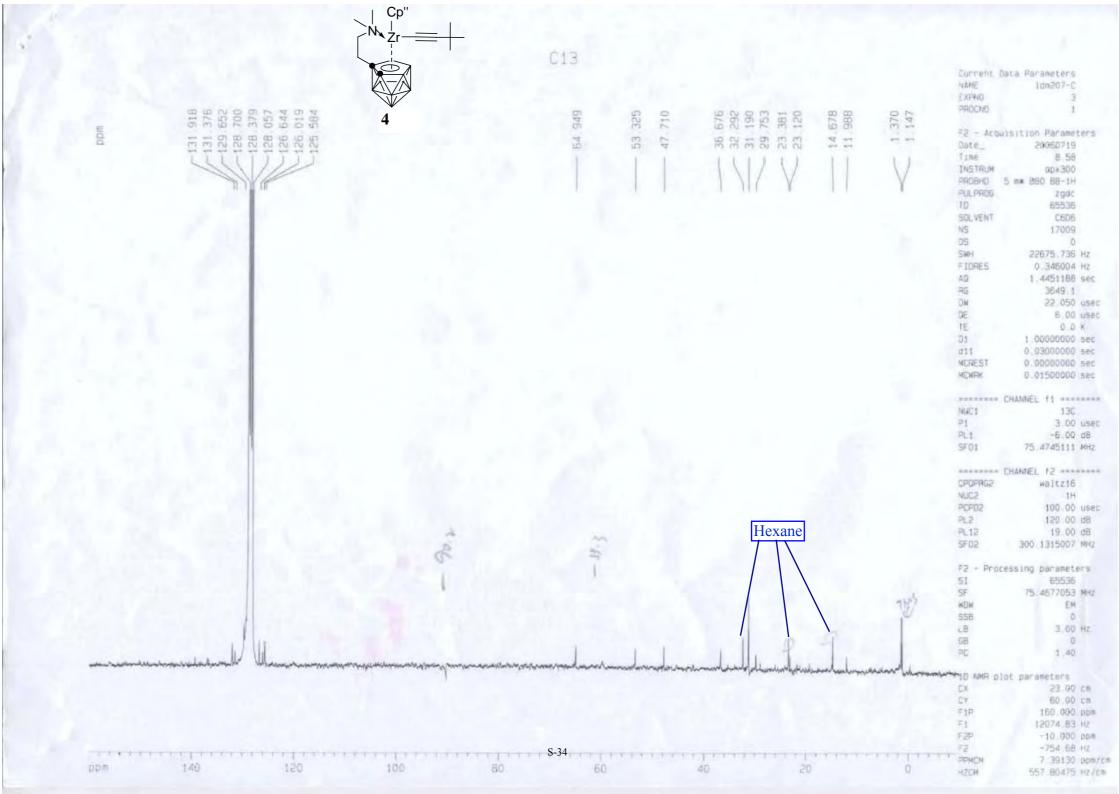












0.045

