Regiocontrolled 1,2-Migration in Cyclization of 1-(Indol-2-yl)-3-alkyn-1-ols: (Ph₃P)Au⁺ vs PtCl₄

Youai Qiu,^a Dengke Ma,^a Wangqing Kong,^a Chunling Fu,^a and Shengming Ma^a*

^a Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, People's Republic of China E-mail: <u>masm@sioc.ac.cn</u>

Supporting Information

General: ¹H and ¹³C NMR spectra were recorded with a Bruker AM 300 MHz. IR spectra were recorded with a Perkin–Elmer 983G instrument. Elemental analyses were measured with a Carlo-Erba EA1110 elementary analysis instrument. Mass spectrometry was performed with an HP 5989A system. High-resolution mass spectrometry was determined with a Finnigan MAT 8430 or Bruker APEXIII instrument. Toluene was distilled from Na/benzophenone before use. Unless otherwise indicated, chemicals and solvents were purchased from commercial suppliers.

1. The Synthesis of 1-(Indol-2-yl)-2,2-dialkyl-3-alkyn-1-ols 2a-2j:

(1) 1-(1-Ethyl-5-methyl-1*H*-indol-2-yl)-2,2-dimethyloct-3-yn-1-ol (2a)(qya-4-054)

Typical procedure: To a mixture of 1-ethyl-5-methyl-1*H*-indole-2-carbaldehyde (1.5060 g, 8 mmol) and 2-bromo-2-methyl-3-octyne (3.2539 g, 16 mmol) in THF (30 mL) was added indium powder (1.8426 g, 16 mmol) with vigorous stirring. After 18 h, the reaction was complete as monitored by TLC. The mixture was quenched with 20 mL of H₂O, extracted with diethyl ether (20 mL×3), washed with water (20 mL) and dried over anhydrous Na₂SO₄. Filtration, evaporation and column chromatography on silica gel (petroleum ether/ethyl acetate = $50/1 \sim 20/1$) afforded **2a** (1.7376 g, 69%) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.42 (s, 1H, ArH), 7.25 (d, J = 8.4 Hz, 1H, ArH), 7.06 (dd, $J_1 = 8.3$ Hz and $J_2 = 1.4$ Hz, 1H, ArH), 6.78 (s, 1H, ArH), 4.53 (d, J = 8.1 Hz, 1H, CH), 4.40-4.13 (m, 2H, NCH₂), 2.47 (s, 3H, CH₃), 2.33-2.19 (m, 3H, CH₂ + OH), 1.63-1.34 (m, 10H, $2 \times CH_2 + 2 \times CH_3$), 1.27 (s, 3H, CH₃), 0.96 (t, J = 7.2 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 138.9, 134.3, 128.6, 127.8, 123.1, 120.5, 109.0, 99.8, 84.2, 83.6, 73.0, 38.2, 37.6, 31.0, 28.0, 26.1, 22.0, 21.3, 18.5, 15.5, 13.6; IR (neat) v (cm⁻¹) 3452, 2964, 2931, 2871, 1482, 1467, 1380, 1341, 1299, 1223, 1184, 1159, 1126, 1034, 1004; MS (70 ev, EI) *m/z* (%) 311 (M⁺, 4.45), 188 (100); HRMS Calcd for C₂₁H₂₉NO (M⁺): 311.2249, Found: 311.2240.

The following compounds **2b-2h** were prepared according to this procedure.

(2) 1-(1-Ethyl-1*H*-indol-2-yl)-2,2-dimethyloct-3-yn-1-ol (2b) (qya-5-043)

The reaction of 1-ethyl-1*H*-indole-2-carbaldehyde (0.6926 g, 4 mmol), indium powder (0.9238 g, 8 mmol), and 2-bromo-2-methyl-3-octyne (1.6269 g, 8 mmol) in THF (30 mL) for 7 h afforded **2b** (0.6614 g, 56%) (petroleum ether/ethyl acetate = $50/1\sim30/1\sim20/1$) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.60 (d, *J* = 7.8 Hz, 1H, ArH), 7.32 (d, *J* = 8.1 Hz, 1H, ArH), 7.19 (t, *J* = 7.7 Hz, 1H, ArH), 7.09 (t, *J* = 7.7 Hz, 1H, ArH), 6.84 (s, 1H, ArH), 4.52 (d, *J* = 8.1 Hz, 1H, CH), 4.40-4.15 (m, 2H, NCH₂), 2.30-2.15 (m, 3H, CH₂ + OH), 1.63-1.32 (m, 10H, 2 × CH₂ + 2 × CH₃), 1.25 (s, 3H, CH₃), 0.92 (t, *J* = 7.2 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 138.7, 135.8, 127.4, 121.3, 120.7, 119.3, 109.2, 100.3, 84.2, 83.4, 72.8, 38.0, 37.4, 30.9, 27.7, 26.2, 21.8, 18.4, 15.3, 13.5; IR (neat) v (cm⁻¹) 3541, 3060, 3024, 2964, 2932, 2871, 1534, 1462, 1381, 1348, 1319, 1257, 1220, 1169, 1139, 1126, 1028, 1004; MS (70 ev, EI) *m/z* (%) 297 (M⁺, 7.72), 174 (100); HRMS Calcd for C₂₀H₂₇NO (M⁺): 297.2093, Found: 297.2097.

(3) **1-(1-Ethyl-5-methoxy-1***H***-indol-2-yl)-2,2-dimethyloct-3-yn-1-ol** (2c) (qya-5-040)

The reaction of 1-ethyl-5-methoxy-1*H*-indole-2-carbaldehyde (1.6206 g, 8 mmol), indium powder (1.8467 g, 16 mmol), and 2-bromo-2-methyl-3-octyne (3.2561 g, 16 mmol) in THF (30 mL) for 18 h afforded **2c** (1.3071 g, 50%) (petroleum ether/ethyl acetate = $30/l\sim10/1$) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.24 (d, *J* = 8.7 Hz,1H, ArH), 7.09 (d, *J* = 2.4 Hz, 1H, ArH), 6.89 (dd, *J*₁ = 8.9 Hz and *J*₂ = 2.6 Hz, 1H, ArH), 6.78 (s, 1H, ArH), 4.52 (d, *J* = 8.4 Hz, 1H, CH), 4.37-4.15 (m, 2H, NCH₂), 3.86 (s, 3H, OCH₃), 2.36-2.18 (m, 3H, CH₂ + OH), 1.62-1.33 (m, 10H, 2 × CH₂ + 2 × CH₃), 1.27 (s, 3H, CH₃), 0.95 (t, *J* = 7.2 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 154.0, 139.4, 131.3, 127.8, 111.8, 110.0, 102.5, 100.0, 84.2, 83.6, 73.0, 55.8, 38.3, 37.6, 31.0, 27.9, 26.1, 22.0, 18.5, 15.5, 13.6; IR (neat) v (cm⁻¹) 3476, 2962, 2932, 2871, 2832, 1621, 1578, 1533, 1481, 1453, 1380, 1318, 1208, 1177, 1152, 1108, 1034, 1005; MS (70 ev, EI) *m*/*z* (%) 327 (M⁺, 12.43), 204 (100); HRMS Calcd for C₂₁H₂₉NO₂ (M⁺): 327.2198, Found: 327.2194.

(4) **1-(5-Bromo-1-methyl-1***H***-indol-2-yl)-2,2-dimethyloct-3-yn-1-ol** (2d) (qya-5-086)

Br

The reaction of 5-bromo-1-methyl-1*H*-indole-2-carbaldehyde (0.5956 g, 2.5 mmol), indium powder (0.8656 g, 7.5 mmol), and 2-bromo-2-methyl-3-octyne (1.0239 g, 5 mmol) in THF (30 mL) for 12 h afforded **2d** (0.7311 g, 81%) (petroleum ether/ethyl acetate = $30/1 \sim 20/1 \sim 5/1$) as a liquid: ¹H NMR (300 MHz, CDCl₃) 7.69 (d,

J = 1.8 Hz, 1H, ArH), 7.25 (dd, $J_1 = 8.7$ Hz and $J_2 = 1.8$ Hz, 1H, ArH), 7.13 (d, J = 8.7 Hz, 1H, ArH), 6.65 (s, 1H, ArH), 4.56 (d, J = 6.0 Hz, 1H, CH), 3.71 (s, 3H, NCH₃), 2.39 (d, J = 6.3 Hz, 1H, OH), 2.20 (t, J = 7.1 Hz, 2H, CH₂), 1.54-1.31 (m, 7H, $2 \times CH_2 + CH_3$), 1.22 (s, 3H, CH₃), 0.90 (t, J = 7.2 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 140.6, 135.9, 128.8, 124.2, 123.0, 112.6, 110.6, 100.1, 83.9, 83.7, 73.2, 37.7, 30.9, 30.5, 27.2, 25.9, 21.9, 18.4, 13.6; IR (neat) v (cm⁻¹) 3536, 2959, 2931, 2871, 1468, 1382, 1308, 1271, 1230, 1145, 1125, 1051, 1006; MS (70 ev, EI) *m/z* (%) 363 (M⁺ (⁸¹Br), 2.20), 361 (M⁺ (⁷⁹Br), 2.24), 131 (100); HRMS Calcd for C₁₉H₂₄NOBr (M⁺): 361.1041, Found: 361.1037.

(5) 1-(1,5-Dimethyl-1*H*-indol-2-yl)-2,2-dimethyloct-3-yn-1-ol (2e) (qya-5-062)

The reaction of 1,5-dimethyl-1*H*-indole-2-carbaldehyde (0.8646 g, 5 mmol), indium powder (1.7319 g, 15 mmol), and 2-bromo-2-methyl-3-octyne (2.0531 g, 10 mmol) in THF (30 mL) for 17 h afforded **2e** (0.9212 g, 62%) (petroleum ether/ethyl acetate = 50/1~30/l) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.39 (s, 1H, ArH), 7.21 (d, *J* = 8.1 Hz, 1H, ArH), 7.04 (d, *J* = 8.4 Hz, 1H, ArH), 6.67 (s, 1H, ArH), 4.61 (d, *J* = 6.6 Hz, 1H, CH), 3.77 (s, 3H, NCH₃), 2.45 (s, 3H, CH₃), 2.30-2.17 (m, 3H, CH₂ + OH), 1.55-1.40 (m, 4H, 2 × CH₂), 1.38 (s, 3H, CH₃), 1.25 (s, 3H, CH₃), 0.93 (t, *J* = 7.2 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 139.5, 135.8, 128.7, 127.5, 123.1, 120.3, 108.9, 100.0, 84.3, 83.5, 73.4, 37.9, 31.0, 30.4, 27.4, 25.8, 22.0, 21.4, 18.5, 13.6; IR (neat) v (cm⁻¹) 3534, 2960, 2931, 2871, 1381, 1359, 1344, 1236, 1186, 1125, 1038, 1005; MS (70 ev, EI) m/z (%) 298 (M⁺, 1.44), 297 (M⁺, 6.96), 174 (100); HRMS Calcd for C₂₀H₂₇NO (M⁺): 297.2093, Found: 297.2090.

(6) 1-(1-Butyl-1*H*-indol-2-yl)-2,2-dimethyloct-3-yn-1-ol (2f) (qya-5-078)

The reaction of 1-butyl-1*H*-indole-2-carbaldehyde (1.0112 g, 5 mmol), indium powder (1.7116 g, 15 mmol), and 2-bromo-2-methyl-3-octyne (2.0219 g, 10 mmol) in THF (30 mL) for 22 h afforded **2f** (0.7909 g, 48%) (petroleum ether/ethyl acetate = $50/1\sim30/1$) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.59 (d, *J* = 7.8 Hz, 1H, ArH), 7.30 (d, *J* = 8.1 Hz, 1H, ArH), 7.18 (t, *J* = 7.7 Hz, 1H, ArH), 7.07 (t, *J* = 7.5 Hz, 1H, ArH), 6.84 (s, 1H, ArH), 4.52 (d, *J* = 7.2 Hz, 1H, CH), 4.31-4.07 (m, 2H, NCH₂), 2.30-2.13 (m, 3H, CH₂ + OH), 1.83-1.65 (m, 2H, CH₂), 1.58-1.30 (m, 9H, 3 × CH₂ + CH₃), 1.24 (s, 3H, CH₃), 1.00-0.82 (m, 6H, 2 × CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 139.3, 136.3, 127.4, 121.4, 120.8, 119.3, 109.5, 100.2, 84.2, 83.6, 72.9, 43.4, 37.6, 32.5, 31.0, 27.9, 26.2, 21.9, 20.3, 18.5, 13.8, 13.6; IR (neat) v (cm⁻¹) 3542, 3055, 3030, 2959, 2931, 2872, 1461, 1380, 1361, 1347, 1317, 1238, 1204, 1168, 1132, 1028, 1004; MS (70 ev, EI) *m/z* (%) 326 (M⁺+1, 2.84), 325 (M⁺, 10.37), 202 (100); HRMS Calcd for C₂₂H₃₁NO (M⁺): 325.2406, Found: 325.2403.

(7) 1-(1-Allyl-1*H*-indol-2-yl)-2,2-dimethyloct-3-yn-1-ol (2g) (qya-5-097)

The reaction of 1-allyl-1*H*-indole-2-carbaldehyde (0.7406 g, 4 mmol), indium powder (1.3829 g, 12 mmol), and 2-bromo-2-methyl-3-octyne (1.6229 g, 8 mmol) in THF (30 mL) for 18 h afforded **2g** (0.5908 g, 48%) (petroleum ether/ethyl acetate = $50/1\sim30/1$) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.74 (d, *J* = 7.5 Hz, 1H, ArH), 7.38 (d, *J* = 7.8 Hz, 1H, ArH), 7.31 (t, *J* = 7.5 Hz, 1H, ArH), 7.23 (t, *J* = 7.5 Hz, 1H, ArH), 7.01 (s, 1H, ArH), 6.13-5.95 (m, 1H, =CH), 5.20 (d, *J* = 10.5 Hz, 1H, one proton of =CH₂), 5.07-4.82 (m, 3H, one proton of =CH₂ + NCH₂), 4.59 (d, *J* = 6.3 Hz, 1H, OCH), 2.51 (d, *J* = 6.9 Hz, 1H, OH), 2.35 (t, *J* = 6.9 Hz, 2H, CH₂), 1.72-1.45 (m, 7H, 2 × CH₂ + CH₃), 1.39 (s, 3H, CH₃), 1.05 (t, *J* = 7.2 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 139.2, 136.5, 133.8, 127.4, 121.6, 120.7, 119.6, 115.9, 109.5, 100.7, 84.2, 83.6, 73.0, 45.5, 37.3, 30.9, 27.8, 26.3, 21.9, 18.4, 13.6; IR (neat) v (cm⁻¹) 3547, 2961, 2931, 2871, 1644, 1611, 1537, 1462, 1381, 1357, 1318, 1253, 1168, 1135, 1029, 1001; MS (70 ev, EI) *m*/*z* (%) 310 (M⁺+1, 2.02), 309 (M⁺, 9.14), 158 (100); HRMS Calcd for C₂₁H₂₇NO (M⁺): 309.2093, Found: 309.2095.

(8) **1-(1-Ethyl-5-methyl-1***H***-indol-2-yl)-2,2-dimethyl-4-phenylbut-3-yn-1-ol** (2h) (qya-5-074)

The reaction of 1-ethyl-5-methyl-1*H*-indole-2-carbaldehyde (0.3741 g, 2 mmol), indium powder (0.6926 g, 6 mmol), and 2-bromo-2-methyl-4-phenyl-3-butyne (0.8926 g, 4 mmol) in THF (10 mL) for 48 h afforded **2h** (0.2813 g, 42%) (petroleum ether/ethyl acetate = $50/1 \sim 30/1 \sim 10/1$) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.52-7.42 (m, 3H, ArH), 7.37-7.32 (m, 3H, ArH), 7.28 (d, *J* = 8.1 Hz, 1H, ArH), 7.10 (d, *J* = 8.4 Hz, 1H, ArH), 6.88 (s, 1H, ArH), 4.69 (d, *J* = 7.5 Hz, 1H, CH), 4.44-4.22 (m, 2H, NCH₂), 2.50 (s, 3H, CH₃), 2.31 (d, *J* = 7.5 Hz, 1H, OH), 1.59 (s, 3H, CH₃), 1.50-1.36 (m, 6H, 2 × CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 138.8, 134.4, 131.6, 128.7, 128.2, 127.9, 127.8, 123.32, 123.26, 120.6, 109.1, 99.9, 94.0, 83.4, 73.1, 38.3, 38.2, 27.4, 26.1, 21.3, 15.5; IR (neat) v (cm⁻¹) 3440, 2972, 2934, 2863, 1598, 1483, 1381, 1340, 1299, 1224, 1126, 1030, 1005; MS (70 ev, EI) *m/z* (%) 332 (M⁺ +1, 2.07), 331 (M⁺, 8.39), 188 (100); HRMS Calcd for C₂₃H₂₅NO (M⁺): 331.1936, Found: 331.1935.

(9) 1-(1-Ethyl-5-methyl-1*H*-indol-2-yl)-2,2-diethyloct-3-yn-1-ol (2i) (qya-5-019)

The reaction of 1-ethyl-5-methyl-1*H*-indole-2-carbaldehyde (0.3741 g, 2 mmol), indium powder (0.4816 g, 4 mmol), and 3-bromo-3-ethyl-4-nonyne (0.9243 g, 4 mmol) in THF (20 mL) for 24 h afforded **2i** (0.3710 g, 55%) (petroleum ether/ethyl

acetate = 50/1~30/l): liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.39 (s, 1H, ArH), 7.26-7.18 (m, 1H, ArH), 7.03 (d, J = 8.1 Hz, 1H, ArH), 6.81 (s, 1H, ArH), 4.62 (d, J =9.3 Hz, 1H, CH), 4.39-4.12 (m, 2H, NCH₂), 2.44 (s, 3H, CH₃), 2.27 (t, J = 7.1 Hz, 2H, CH₂), 2.11 (d, J = 9.0 Hz, 1H, OH), 1.91-1.75 (m, 2H, CH₂), 1.68-1.32 (m, 9H, 3× CH₂+CH₃), 0.99 (t, J = 7.5 Hz, 3H, CH₃), 0.93 (t, J = 7.4 Hz, 3H, CH₃), 0.84 (t, J =7.4 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 139.1, 134.3, 128.6, 127.8, 123.0, 120.4, 109.0, 100.0, 85.7, 82.4, 69.2, 45.4, 38.1, 31.1, 27.8, 26.6, 22.0, 21.4, 18.5, 15.5, 13.6, 8.60, 8.59; IR (neat) v (cm⁻¹) 3540, 3015, 2964, 2933, 2874, 1482, 1457, 1378, 1343, 1299, 1223, 1185, 1158, 1127, 1078, 1017; MS (70 ev, EI) m/z (%) 339 (M⁺, 6.24), 188 (100); HRMS Calcd for C₂₃H₃₃NO (M⁺): 339.2562, Found: 339.2558.

(10) **1-(1-Ethyl-5-methyl-1***H***-indol-2-yl)-2,2-tetramethyleneoct-3-yn-1-ol** (2j) (qya-5-103)

The reaction of 1-ethyl-5-methyl-1*H*-indole-2-carbaldehyde (0.5616 g, 3 mmol), indium powder (1.0416 g, 9 mmol), and 1-bromo-1-(hex-1-yn-1-yl)cyclopentane (1.3762 g, 6 mmol) in THF (30 mL) for 24 h afforded **2j** (0.3281 g, 32%) (petroleum ether/ethyl acetate = $50/1 \sim 30/1$): liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.38 (s, 1H, ArH), 7.21 (d, *J* = 8.1 Hz, 1H, ArH), 7.02 (d, *J* = 8.1 Hz, 1H, ArH), 6.83 (s, 1H, ArH), 4.45 (d, *J* = 9.9 Hz, 1H, CH), 4.38-4.11 (m, 2H, NCH₂), 2.44 (s, 3H, CH₃), 2.34-2.17 (m, 3H, CH₂ + OH), 2.17-2.03 (m, 1H, one proton of CH₂), 2.03-1.30 (m, 14H, one

proton of CH₂ + 5 × CH₂ + CH₃), 0.92 (t, J = 7.4 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 139.3, 134.4, 128.5, 127.6, 123.2, 120.6, 109.0, 100.1, 84.4, 84.0, 72.1, 48.5, 40.5, 38.1, 37.8, 31.0, 24.9, 24.5, 22.0, 21.3, 18.6, 15.5, 13.6; IR (neat) v (cm⁻¹) 3451, 2956, 2929, 2870, 1483, 1451, 1378, 1343, 1299, 1218, 1189, 1131, 1076, 1022; MS (70 ev, EI) m/z (%) 337 (M⁺, 8.52), 188 (100); HRMS Calcd for C₂₃H₃₁NO (M⁺): 337.2406, Found: 337.2399.

2. AuCl(PPh₃)/AgBF₄-catalyzed Cyclization Reaction of 1-(Indol-2yl)-2,2-dialkyl-3-alkyn-1-ols

(1) 4-Butyl-9-ethyl-1,2,6-trimethyl-9H-carbazole (3a) qya-5-058

Typical Procedure: To a dry Schlenk tube were added AgBF₄ (10.8 mg, 0.055 mmol, weighed in glove box), AuCl(PPh₃) (24.6 mg, 0.05 mmol), **2a** (310.2 mg, 1.0 mmol), and toluene (10 mL) under N₂. After continuous stirring for 12 h at rt, the reaction was complete as monitored by TLC. Filtration through a short pad of silica gel (eluent: Et₂O (20 mL × 3)), evaporation (the ratio of **3a** : **4a** (97 : 3) was determined by ¹H NMR analysis of the crude product), column chromatography on silica gel (petroleum ether/dichloromethane = 30/1 for the first round, petroleum ether/dichloromethane = 30/1 for the second round (impure part)) afforded **3a** (188.1 mg, 64%), which was further purified by recrystallization to afford pure **3a** (152.8 mg, 52%) as a solid: m. p. 80~82 °C (*n*-hexane/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.94 (s, 1H, ArH), 7.34 (d, *J* = 8.4 Hz, 1H, ArH), 7.31 (d, *J* = 8.4 Hz, 1H, ArH), 6.92 (s, 1H, ArH), 4.61

(q, J = 7.1 Hz, 2H, NCH₂), 3.22 (t, J = 7.8 Hz, 2H, ArCH₂), 2.73 (s, 3H, CH₃), 2.62 (s, 3H, CH₃), 2.53 (s, 3H, CH₃), 1.96-1.82 (m, 2H, CH₂), 1.71-1.58 (m, 2H, CH₂), 1.48 (t, J = 6.9 Hz, 3H, CH₃), 1.10 (t, J = 7.4 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 140.3, 139.7, 135.2, 134.2, 127.9, 125.7, 123.4, 122.7, 122.4, 120.0, 115.7, 108.2, 39.9, 33.9, 31.9, 23.0, 21.6, 20.9, 15.5, 14.8, 14.1; IR (KBr) v (cm⁻¹) 3011, 2955, 2928, 2862, 1592, 1574, 1484, 1377, 1343, 1308, 1229, 1172, 1150, 1081; MS (70 ev, EI) m/z (%) 294 (M⁺+1, 21.92), 293 (M⁺, 100); Elemental analysis calcd (%) for C₂₁H₂₇N: C, 85.95; H, 9.27; N, 4.77; Found: C, 85.64, H, 9.31; N, 4.84.

The following compounds **3b-3h** were prepared according to this procedure.

(2) 4-Butyl-9-ethyl-1,2-dimethyl-9H-carbazole (3b) qya-5-055

The reaction of AgBF₄ (10.6 mg, 0.054 mmol), AuCl(PPh₃) (25.0 mg, 0.051 mmol), and **2b** (297.8 mg, 1.0 mmol) in toluene (10 mL) at rt for 12 h afforded **3b** (178.2 mg, 64%) (petroleum ether/dichloromethane = 20/l) (the ratio of **3b** : **4b** (97 : 3) was determined by ¹H NMR analysis of the crude product), which was further purified by recrystallization to afford pure **3b** (125.4 mg, 45%) as a solid: m. p. 62~64 °C (*n*-hexane/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 8.19 (d, *J* = 7.8 Hz, 1H, ArH), 7.60-7.44 (m, 2H, ArH), 7.35-7.26 (m, 1H, ArH), 6.98 (s, 1H, ArH), 4.64 (q, *J* = 7.1 Hz, 2H, NCH₂), 3.27 (t, *J* = 7.8 Hz, 2H, ArCH₂), 2.76 (s, 3H, ArCH₃), 2.57 (s, 3H, ArCH₃), 2.00-1.82 (m, 2H, CH₂), 1.72-1.48 (m, 2H, CH₂), 1.53 (t, *J* = 7.2 Hz, 3H,

CH₃), 1.12 (t, J = 7.2 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 141.3, 140.0, 135.2, 134.4, 124.4, 123.2, 123.0, 122.2, 120.1, 118.8, 115.7, 108.4, 39.8, 33.9, 32.0, 23.0, 20.9, 15.5, 14.7, 14.1; IR (neat) v (cm⁻¹) 2956, 2929, 2863, 1594, 1574, 1502, 1463, 1393, 1378, 1328, 1266, 1229, 1159, 1082, 1029; MS (70 ev, EI) m/z (%) 280 (M⁺+1, 22.45), 279 (M⁺, 100); Elemental analysis calcd (%) for C₂₀H₂₅N: C, 85.97; H, 9.02; N, 5.01; Found: C, 85.73, H, 9.19; N, 5.06.

(3) 4-Butyl-9-ethyl-1,2-dimethyl-6-methoxy-9H-carbazole (3c) qya-5-059

The reaction of AgBF₄ (10.7 mg, 0.055 mmol), AuCl(PPh₃) (24.7 mg, 0.05 mmol), and **2c** (327.3 mg, 1.0 mmol) in toluene (10 mL) at rt for 12 h afforded **3c** (211.6 mg, 68%) (petroleum ether/dichloromethane = 5/l) (the ratio of **3c** : **4c** (97 : 3) was determined by ¹H NMR analysis of the crude product), which was further purified by recrystallization to afford pure **3c** (180.6 mg, 58%) as a solid: m. p. 93~94 °C (*n*-hexane/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.62 (d, *J* = 2.1 Hz, 1H, ArH), 7.32 (d, *J* = 9.0 Hz, 1H, ArH), 7.11 (dd, *J_I* = 9.0 Hz and *J₂* = 2.4 Hz, 1H, ArH), 6.86 (s, 1H, ArH), 4.56 (q, *J* = 7.1 Hz, 2H, NCH₂), 3.96 (s, 3H, OCH₃), 3.16 (t, *J* = 7.8 Hz, 2H, ArCH₂), 2.69 (s, 3H, ArCH₃), 2.49 (s, 3H, ArCH₃), 1.04 (t, *J* = 7.4 Hz, 3H, CH₂), 1.67-1.50 (m, 2H, CH₂), 1.44 (t, *J* = 7.2 Hz, 3H, ArCH₃), 1.04 (t, *J* = 7.4 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 153.4, 140.7, 136.5, 135.2, 134.5, 123.6, 122.7, 120.0, 115.9, 112.8, 109.0, 106.1, 56.1, 40.0, 33.9, 32.1, 23.1, 20.9, 15.5, 14.7, 14.1; IR (neat) v (cm⁻¹) 2954, 2930, 2864, 2829, 1619, 1579, 1482, 1377, 1349, 1311, 1296,

1213, 1172, 1075, 1039; MS (70 ev, EI) m/z (%) 310 (M⁺+1, 23.44), 309 (M⁺, 100); Elemental analysis calcd (%) for C₂₁H₂₇NO: C, 81.51; H, 8.79; N, 4.53; Found: C, 81.40, H, 8.89; N, 4.56.

(4) 6-Bromo-4-butyl-1,2,9-trimethyl-9H-carbazole (3d) qya-5-088

The reaction of AgBF₄ (5.3 mg, 0.027 mmol), AuCl(PPh₃) (12.6 mg, 0.025 mmol), and 2d (181.3 mg, 0.5 mmol) in toluene (5 mL) at rt for 12 h afforded 3d (94.6 mg, 55%) (petroleum ether/dichloromethane = 30/1) (the ratio of 3d : 4d (97 : 3) was determined by ¹H NMR analysis of the crude product), which was further purified by recrystallization to afford pure **3d** (81.6 mg, 47%) as a solid: m. p. 103~104 °C (*n*-hexane/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 8.14 (d, J = 1.8 Hz, 1H, ArH), 7.50 (dd, $J_1 = 8.7$ Hz and $J_2 = 1.8$ Hz, 1H, ArH), 7.22 (d, J = 8.7 Hz, 1H, ArH), 6.87 (s, 1H, ArH), 4.06 (s, 3H, NCH₃), 3.09 (t, J = 7.8 Hz, 2H, ArCH₂), 2.70 (s, 3H, ArCH₃), 2.45 (s, 3H, ArCH₃), 1.86-1.71 (m, 2H, CH₂), 1.62-1.47 (m, 2H, CH₂), 1.02 (t, J = 7.4 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 141.4, 141.0, 135.4, 135.3, 127.0, 124.6, 123.4, 119.0, 116.4, 111.6, 109.8, 33.6, 33.5, 31.7, 22.9, 20.8, 15.2, 14.0; IR (neat) v (cm⁻¹) 2955, 2928, 2870, 1622, 1597, 1465, 1417, 1377, 1293, 1143, 1110, 1067; MS (70 ev, EI) m/z (%) 346 (M⁺(⁸¹Br) + 1, 21.67), 345 (M⁺) (^{81}Br) , 95.07), 344 (M⁺ (⁷⁹Br) + 1, 25.18), 343 (M⁺ (⁷⁹Br), 100); Elemental analysis calcd (%) for C₁₉H₂₂BrN: C, 66.28; H, 6.44; N, 4.07; Found: C, 66.20; H, 6.43; N, 4.19.

(5) 4-Butyl-1,2,6,9-tetramethyl-9H-carbazole (3e) qya-5-072

The reaction of AgBF₄ (10.8 mg, 0.055 mmol), AuCl(PPh₃) (25.0 mg, 0.051 mmol), and **2e** (297.8 mg, 1.0 mmol) in toluene (10 mL) at rt for 12 h afforded **3e** (200.6 mg, 72%) (petroleum ether/dichloromethane = 30/k~15/1) (the ratio of **3e** : **4e** (97 : 3) was determined by ¹H NMR analysis of the crude product), which was further purified by recrystallization to afford pure **3e** (165.0 mg, 59%) as a solid: m. p. 105~106 °C (*n*-hexane/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.84 (s, 1H, ArH), 7.28-7.21 (m, 2H, ArH), 6.82 (s, 1H, ArH), 4.06 (s, 3H, NCH₃), 3.13 (t, *J* = 7.8 Hz, 2H, ArCH₂), 2.70 (s, 3H, ArCH₃), 2.54 (s, 3H, ArCH₃), 2.44 (s, 3H, ArCH₃), 1.86-1.72 (m, 2H, CH₂), 1.62-1.47 (m, 2H, CH₂), 1.01 (t, *J* = 7.4 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 141.5, 140.9, 135.2, 134.3, 127.9, 125.7, 123.2, 122.8, 122.3, 119.9, 116.1, 108.2, 33.8, 33.5, 31.9, 23.0, 21.7, 20.7, 15.2, 14.1; IR (neat) v (cm⁻¹) 2923, 1594, 1573, 1463, 1388, 1315, 1299, 1233, 1174, 1147, 1091, 1048; MS (70 ev, EI) *m*/z (%) 280 (M⁺+1, 23.69); 279 (M⁺, 100); Elemental analysis calcd (%) for C₂₀H₂₅N: C, 85.97; H, 9.02; N, 5.01; Found: C, 85.72; H, 9.10; N, 5.06.

(6) 4,9-Dibutyl-1,2-dimethyl-9H-carbazole (3f) qya-5-085

The reaction of AgBF₄ (10.7 mg, 0.055 mmol), AuCl(PPh₃) (24.6 mg, 0.05 mmol), and 2f (325.2 mg, 1.0 mmol) in toluene (10 mL) at rt for 18 h afforded 3f (205.7 mg, 67%) (petroleum ether/dichloromethane = 30/l) (the ratio of **3f** : **4f** (97 : 3) was determined by ¹H NMR analysis of the crude product) as a solid: m. p. 67~68 °C (*n*-hexane/ethyl acetate); ¹H NMR of **3f** (300 MHz, CDCl₃) δ 8.05 (d, J = 8.1 Hz, 1H, ArH), 7.36 (t, J = 7.4 Hz, 1H, ArH), 7.28 (d, J = 7.8 Hz, 1H, ArH), 7.17 (t, J = 7.2 Hz, 1H, ArH), 6.82 (s, 1H, ArH), 4.30 (t, 2H, J = 8.0 Hz, NCH₂), 3.12 (t, J = 7.4 Hz, 2H, ArCH₂), 2.53 (s, 3H, ArCH₃), 2.39 (s, 3H, ArCH₃), 1.87-1.64 (m, 4H, 2 × CH₂), 1.61-1.44 (m, 2H, CH₂), 1.42-1.26 (m, 2H, CH₂), 1.03-0.85 (m, 6H, $2 \times CH_3$); the following signals are discernible for 4f: 6.96 (s, 1H, ArH), 4.10 (t, J = 6.9 Hz, 2H, NCH₂), 2.32 (s, 3H, ArCH₃); ¹³C NMR of **3f** (75 MHz, CDCl₃) δ 141.7, 140.1, 135.1, 134.4, 124.3, 123.1, 122.9, 122.1, 120.1, 118.7, 115.7, 108.6, 45.0, 33.9, 32.6, 32.0, 23.0, 20.9, 20.2, 14.7, 14.1, 13.8; IR (neat) v (cm⁻¹) 2957, 2929, 2863, 1594, 1574, 1502, 1463, 1456, 1393, 1328, 1218, 1159, 1113, 1085, 1029; MS (70 ev, EI) m/z (%) $308 (M^++1, 16.67), 307 (M^+, 64.64), 264 (100);$ Elemental analysis calcd (%) for C₂₂H₂₉N: C, 85.94; H, 9.51; N, 4.56; Found: C, 85.70; H, 9.61; N, 4.70.

(7) 9-Allyl-4-butyl-1,2-dimethyl-9H-carbazole (3g) qya-5-105

The reaction of AgBF₄ (10.8 mg, 0.055 mmol), AuCl(PPh₃) (25.0 mg, 0.05 mmol), and 2g (311.2 mg, 1.0 mmol) in toluene (10 mL) at rt for 12 h afforded 3g (202.8 mg, 69%, 3g : 4g = 96 : 4 as determined by ¹H NMR analysis) (petroleum) ether/dichloromethane = $30/l \sim 20/1$) (the ratio of 3g : 4g (95 : 5) was determined by ¹H NMR analysis of the crude product), which was further purified by recrystallization to afford pure **3g** (158.6 mg, 54%) as a solid: m. p. 101~102 °C (*n*-hexane/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 8.09 (d, J = 7.5 Hz, 1H, ArH), 7.42 (t, J = 7.5 Hz, 1H, ArH), 7.32 (d, J = 7.8 Hz, 1H, ArH), 7.27-7.20 (m, 1H, ArH), 6.89 (s, 1H, ArH), 6.23-6.07 (m, 1H, =CH), 5.23 (d, J = 11.7 Hz, 1H, one proton of =CH₂), 5.14-5.07 (m, 2H, NCH₂), 5.01 (d, J = 17.1 Hz, 1H, one proton of =CH₂), 3.17 (t, J = 7.8 Hz, 2H, ArCH₂), 2.64 (s, 3H, ArCH₃), 2.46 (s, 3H, ArCH₃), 1.91-1.73 (m, 2H, CH₂), 1.63-1.48 (m, 2H, CH₂), 1.02 (t, J = 7.2 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 142.0, 140.7, 135.2, 134.6, 134.2, 124.6, 123.2, 123.1, 122.1, 120.1, 119.1, 116.2, 116.0, 108.8, 47.7, 33.9, 32.0, 23.0, 20.8, 14.5, 14.1; IR (neat) v (cm⁻¹) 2955, 2928, 2862, 1645, 1595, 1574, 1502, 1463, 1392, 1354, 1327, 1302, 1225, 1162, 1118, 1029; MS (70 ev, EI) m/z (%) 292 (M⁺+1, 26.18), 291 (M⁺, 100); Elemental analysis calcd (%) for C₂₁H₂₅N: C, 86.55; H, 8.65; N, 4.81; Found: C, 86.38; H, 8.70; N, 4.89.

(8) 9-Ethyl-1,2,6-trimethyl-4-phenyl-9H-carbazole (3h) qya-5-096

The reaction of AgBF₄ (10.6 mg, 0.054 mmol), AuCl(PPh₃) (24.5 mg, 0.05 mmol), and 2h (165.9 mg, 0.5 mmol) in toluene (5 mL) at rt for 18 h afforded 3h (104.7 mg, 67%) (petroleum ether/dichloromethane = 20/l) (the ratio of **3h** : **4h** (93 : 7) was determined by ¹H NMR analysis of the crude product), which was further purified by recrystallization to afford pure **3h** (88.9 mg, 57%) as a solid: m. p. 156~157 °C (*n*-hexane/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.61-7.40 (m, 5H, ArH), 7.26 (d, J = 8.7 Hz, 1H, ArH), 7.16 (d, J = 8.1 Hz, 1H, ArH), 7.07 (s, 1H, ArH), 6.91 (s, 1H, ArH), 4.59 (q, J = 7.2 Hz, 2H, CH₂), 2.74 (s, 3H, CH₃), 2.50 (s, 3H, CH₃), 2.27 (s, 3H, CH₃), 1.45 (t, J = 7.2 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 141.6, 140.1, 139.9, 134.9, 134.2, 129.3, 128.2, 127.5, 127.2, 126.2, 123.5, 123.0, 122.1, 119.7, 117.3, 108.2, 40.0, 21.4, 20.9, 15.5, 14.9; IR (neat) v (cm⁻¹) 3069, 3014, 2977, 2957, 2922, 2864, 1599, 1590, 1564, 1478, 1463, 1443, 1373, 1354, 1309, 1269, 1209, 1185, 1150, 1170; GC-MS (GC condition: injector: 280 °C; column: DB5 column 30 m \times 0.25 mm, temperature programming: 60 °C (2 min), 20 °C/min to 280 °C, 280 °C (30 min); detector: 280 °C) (70 ev, EI) m/z (%) for **4h**: T_R 6.1 min: 314 $(M^+ + 1, 27.05), 313 (M^+, 95.88), 298 (100), \text{ for }$ **3h** $: T_R 6.3 \text{ min: } 314 (M^+ + 1, 24.46),$ 313 (M⁺, 99.01), 298 (100); Elemental analysis calcd (%) for C₂₃H₂₃N: C, 88.13; H, 7.40; N, 4.47; Found: C, 88.04; H, 7.43; N, 4.63.

(9) 4-Butyl-9-ethyl-1,2-dimethyl-9H-carbazole (3b) qya-7-101

The reaction of AgBF₄ (33.9 mg, 0.175 mmol), AuCl(PPh₃) (87.0 mg, 0.175 mmol), and **2b** (1040.1 mg, 3.5 mmol) in toluene (35 mL) at rt for 12 h afforded **3b** (645.3 mg, 66%) (petroleum ether/dichloromethane = 20/l) (the ratio of **3b** : **4b** (97 : 3) was determined by ¹H NMR analysis of the crude product), which was further purified by recrystallization to afford pure **3b** (496.3 mg, 51%) as a solid: m. p. 62~64 °C (*n*-hexane/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 8.25 (d, *J* = 7.8 Hz, 1H, ArH), 7.63-7.47 (m, 2H, ArH), 7.39 (t, *J* = 7.4 Hz, 1H, ArH), 7.03 (s, 1H, ArH), 4.67 (q, *J* = 7.1 Hz, 2H, NCH₂), 3.32 (t, *J* = 7.8 Hz, 2H, ArCH₂), 2.80 (s, 3H, ArCH₃), 2.62 (s, 3H, ArCH₃), 2.05-1.90 (m, 2H, CH₂), 1.80-1.63 (m, 2H, CH₂), 1.57 (t, *J* = 7.2 Hz, 3H, CH₃), 1.18 (t, *J* = 7.4 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 141.3, 140.0, 135.2, 134.4, 124.4, 123.2, 123.0, 122.2, 120.1, 118.8, 115.7, 108.4, 39.8, 33.9, 32.0, 23.0, 20.9, 15.5, 14.7, 14.1.

(10) 4-Butyl-1,2,9-triethyl-6-methyl-9H-carbazole (3i) qya-5-099

The reaction of AgBF₄ (10.1 mg, 0.052 mmol), AuCl(PPh₃) (24.6 mg, 0.05 mmol), and **2i** (339.6 mg, 1.0 mmol) in toluene (10 mL) at rt for 12 h afforded **3i** (183.1 mg, 57%, **3i** : **4i** = 98 : 2 as determined by ¹H NMR analysis) (petroleum ether/dichloromethane = $40/1 \sim 20/1$): liquid; ¹H NMR (300 MHz, CDCl₃) δ 8.01 (s, 1H, ArH), 7.46-7.30 (m, 2H, ArH), 7.00 (s, 1H, ArH), 4.62 (q, J = 7.1 Hz, 2H, NCH₂), 3.30 (t, J = 7.8 Hz, 2H, ArCH₂), 3.19 (q, J = 7.5 Hz, 2H, ArCH₂), 2.96 (q, J = 7.6 Hz, 2H, ArCH₂), 2.67 (s, 3H, CH₃), 2.03-1.87 (m, 2H, CH₂), 1.77-1.62 (m, 2H, CH₂), 1.55-1.37 (m, 9H, 3× CH₃), 1.16 (t, J = 7.5 Hz, 3H, CH₃); the following signals are discernible for **4i**: 7.21 (s, 1H, ArH), 4.40 (q, J = 7.1 Hz, 2H, NCH₂); ¹³C NMR (75 MHz, CDCl₃) δ 139.9, 139.5, 139.1, 135.6, 127.8, 125.6, 123.5, 122.4, 121.6, 121.5, 120.3, 108.2, 39.4, 34.1, 31.8, 26.1, 23.0, 21.6, 20.4, 16.6, 16.4, 15.2, 14.1; IR (neat) v (cm⁻¹) 3006, 2962, 2930, 2869, 1591, 1574, 1479, 1378, 1348, 1305, 1229, 1170, 1054; MS (70 ev, EI) m/z (%) 322 (M⁺+1, 26.18), 321 (M⁺, 100); HRMS Calcd for C₂₃H₃₁N (M⁺): 321.2457, Found: 321.2452.

(11) **6-Butyl-11-ethyl-8-methyl-1,2,3,4-tetrahydro-11***H*-benzo[*a*]carbazole (3j) qya-5-098

The reaction of AgBF₄ (10.5 mg, 0.054 mmol), AuCl(PPh₃) (25.0 mg, 0.05 mmol), and **2j** (336.5 mg, 1.0 mmol) in toluene (10 mL) at rt for 12 h afforded **3j** (207.2 mg, 68%, **3j** : **4j** = 96 : 4 as determined by ¹H NMR analysis) (petroleum ether/dichloromethane = 100/l~40/1): solid; m. p. 103~104 °C (*n*-hexane/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 8.04 (s, 1H, ArH), 7.49-7.31 (m, 2H, ArH), 6.91 (s, 1H, ArH), 4.68 (q, *J* = 7.1 Hz, 2H, NCH₂), 3.40 (t, *J* = 5.7 Hz, 2H, ArCH₂), 3.31 (t, *J* = 7.8 Hz, 2H, ArCH₂), 3.13 (t, *J* = 5.7 Hz, 2H, ArCH₂), 2.72 (s, 3H, CH₃), 2.16-1.89 (m, 6H, 3 × CH₂), 1.82-1.65 (m, 2H, CH₂), 1.52 (t, *J* = 7.2 Hz, 3H, CH₃); 1.20 (t, J = 7.2 Hz, 3H, CH₃); the following signals are discernible for **4j**: 7.12 (s, 1H, ArH), 4.39 (q, J = 6.9 Hz, 2H, NCH₂); ¹³C NMR (75 MHz, CDCl₃) δ 139.7, 139.3, 135.3, 134.8, 127.9, 125.4, 123.5, 122.3, 121.8, 119.3, 117.6, 108.2, 39.9, 33.9, 31.9, 30.7, 26.3, 23.7, 23.0, 22.8, 21.6, 15.5, 14.1; IR (neat) v (cm⁻¹) 3008, 2952, 2928, 2859, 1593, 1574, 1483, 1439, 1376, 1347, 1308, 1262, 1236, 1172, 1075, 1030; MS (70 ev, EI) m/z (%) 320 (M⁺+1, 26.15), 319 (M⁺, 100); Elemental analysis calcd (%) for C₂₃H₂₉N: C, 86.47; H, 9.15; N, 4.38; Found: C, 86.19; H, 9.27; N, 4.52.

3. PtCl₄-catalyzed cyclization reaction of 1-(indol-2-yl)-2,2-dimethyl-3-alkyn-1-ols

(1) 4-Butyl-9-ethyl-2,3,6-trimethyl-9H-carbazole (4a) qya-5-038

Typical Procedure: To a dry Schlenk tube were added PtCl₄ (17.1 mg, 0.05 mmol, weighed inside a glove box), **2a** (311.6 mg, 1.0 mmol), and toluene (10 mL) under N₂. After continuous stirring for 18 h at -10 °C, the reaction was complete as monitored by TLC. Filtration through a short pad of silica gel (eluent: Et₂O (20 mL × 3)), evaporation (the ratio of **4a** : **3a** (92 : 8) was determined by ¹H NMR analysis of the crude product), and column chromatography on silica gel (petroleum ether/ethyl acetate = 100/l) afforded **4a** and **3a** (235.0 mg, 80%), which was further purified by recrystallization to afford **4a** (179.3 mg, 61%, **4a** : **3a** = 96 : 4) as a solid: m. p. 84~86 °C (*n*-hexane/ethyl acetate); ¹H NMR of **4a** (300 MHz, CDCl₃) δ 7.99 (s, 1H, ArH), 7.37-7.27 (m, 2H, ArH), 7.14 (s, 1H, ArH), 4.34 (q, *J* = 7.1 Hz, 2H, NCH₂),

3.33 (t, J = 8.0 Hz, 2H, ArCH₂), 2.62 (s, 3H, ArCH₃), 2.56 (s, 3H, ArCH₃), 2.43 (s, 3H, ArCH₃), 1.92-1.62 (m, 4H, 2 × CH₂), 1.44 (t, J = 7.1 Hz, 3H, CH₃), 1.13 (t, J = 7.2 Hz, 3H, CH₃); the following signals are discernible for **3a**: 7.93 (s, 1H, ArH), 6.91 (s, 1H, ArH), 4.60 (q, J = 7.1 Hz, 2H, NCH₂), 3.21 (t, J = 7.7 Hz, 2H, ArCH₂), 2.73 (s, 3H, ArCH₃); ¹³C NMR of **4a** (75 MHz, CDCl₃) δ 138.8, 138.2, 136.4, 134.8, 127.4, 125.4, 124.6, 123.2, 122.4, 119.1, 107.7, 107.1, 37.1, 31.4, 30.3, 23.4, 22.3, 21.7, 14.5, 14.1, 13.6; IR (neat) v (cm⁻¹) 2956, 2929, 2871, 1623, 1605, 1576, 1487, 1471, 1377, 1349, 1307, 1266, 1192, 1147, 1015; GC-MS (GC condition: injector: 280 °C; column: DB5 column 30 m × 0.25 mm, temperature programming: 60 °C (2 min), 20 °C/min to 280 °C, 280 °C (30 min); detector: 280 °C) (70 ev, EI) m/z (%) for **4a**: T_R 5.290 min: 294 (M⁺+1, 22.77), 293 (M⁺, 100), for **3a**: T_R 5.313 min: 294 (M⁺+1, 23.31), 293 (M⁺, 100); Elemental analysis calcd (%) for C₂₁H₂₇N: C, 85.95; H, 9.27; N, 4.77; Found: C, 85.91; H, 9.46; N, 4.91.

The following compounds **4b**, **4c**, **4e**, **4f**, and **4h** were prepared according to this procedure.

(2) 4-Butyl-9-ethyl-2,3-dimethyl-9H-carbazole (4b) qya-5-037

The reaction of PtCl₄ (17.1 mg, 0.05 mmol) and **2b** (297.2 mg, 1.0 mmol) in toluene (10 mL) at -10 °C for 18 h afforded **4b** and **3b** (226.2 mg, 81%) (petroleum ether/ethyl acetate = 100/l) (the ratio of **4b** : **3b** (89 : 11) was determined by ¹H NMR

analysis of the crude product) as a liquid: ¹H NMR of **4b** (300 MHz, CDCl₃) δ 8.25 (d, J = 7.8 Hz, 1H, ArH), 7.57-7.43 (m, 2H, ArH), 7.37-7.27 (m, 1H, ArH), 7.20 (s, 1H, ArH), 4.39 (q, J = 7.2 Hz, 2H, NCH₂), 3.39 (t, J = 8.1 Hz, 2H, ArCH₂), 2.61 (s, 3H, ArCH₃), 2.49 (s, 3H, ArCH₃), 1.99-1.61 (m, 4H, $2 \times CH_2$), 1.49 (t, J = 7.2 Hz, 3H, CH₃), 1.16 (t, J = 7.2 Hz, 3H, CH₃); the following signals are discernible for **3b**: 8.20 (d, J = 8.1 Hz, 1H, ArH), 6.98 (s, 1H, ArH), 4.65 (q, J = 7.1 Hz, 2H, NCH₂), 3.27 (t, J = 7.8 Hz, 2H, ArCH₂), 2.77 (s, 3H, ArCH₃), 2.57 (s, 3H, ArCH₃); ¹³C NMR of **4b** (75 MHz, CDCl₃) δ 139.9, 138.5, 136.4, 135.0, 124.9, 124.2, 123.1, 122.2, 119.3, 118.4, 108.3, 107.2, 37.1, 31.4, 30.4, 23.4, 22.3, 14.5, 14.1, 13.6; the following signals are discernible for **3b**: 141.4, 140.0, 135.2, 134.5, 124.4, 123.3, 123.0, 122.2, 120.2, 118.8, 115.7, 108.5, 39.8, 33.9, 32.0, 23.0, 21.0, 15.5, 14.8, 14.1; IR (neat) v (cm⁻¹) 3049, 2956, 2929, 2871, 1620, 1598, 1572, 1470, 1378, 1330, 1314, 1264, 1207, 1180, 1111, 1082, 1030; GC-MS (GC condition: injector: 280 °C; column: DB5 column 30 m \times 0.25 mm, temperature programming: 60 °C (2 min), 20 °C/min to 280 °C, 280 °C (30 min); detector: 280 °C) (70 ev, EI) m/z (%) for **4b**: T_R 5.13 min: 280 (M⁺+1, 22.45), 279 (M^+ , 100), for **3b**: T_R 5.17 min: 280 (M^+ +1, 22.49), 279 (M^+ , 100); Elemental analysis calcd (%) for C₂₀H₂₅N: C, 85.97; H, 9.02; N, 5.01; Found: C, 85.73; H, 9.19; N, 5.06.

The reaction of PtCl₄ (17.0 mg, 0.05 mmol) and 2c (327.2 mg, 1.0 mmol) in toluene (10 mL) at -10 °C for 18 h afforded 4c and 3c (246.0 mg, 80%) (petroleum ether/ethyl acetate = 50/l) (the ratio of 4c : 3c (89 : 11) as determined by ¹H NMR analysis of the crude product), which was further purified by recrystallization to afford 4c and 3c (201.6 mg, 65%, 4c : 3c = 98:2 as determined by ¹H NMR analysis) as a solid: m. p. 100~102 °C (n-hexane/ethyl acetate); ¹H NMR of 4c (300 MHz, $CDCl_3$) δ 7.67 (d, J = 2.1 Hz, 1H, ArH), 7.29 (d, J = 9.0 Hz, 1H, ArH), 7.14-7.05 (m, 2H, ArH), 4.30 (q, J = 7.1 Hz, 2H, NCH₂), 3.95 (s, 3H, OCH₃), 3.26 (t, J = 8.1 Hz, 2H, ArCH₂), 2.51 (s, 3H, ArCH₃), 2.38 (s, 3H, ArCH₃), 1.83-1.60 (m, 4H, 2 × CH₂), 1.39 (t, J = 7.2 Hz, 3H, CH₃), 1.06 (t, J = 7.1 Hz, 3H, CH₃); the following signals are discernible for 3c: 2.68 (s, 3H, ArCH₃); 13 C NMR of 4c (75 MHz, CDCl₃) δ 153.1, 139.2, 136.2, 135.1, 124.4, 123.3, 119.1, 112.7, 108.3, 107.3, 106.3, 56.2, 37.2, 31.5, 30.3, 23.5, 22.3, 14.5, 14.1, 13.7; IR (neat) v (cm⁻¹) 2955, 2931, 2871, 2829, 1625, 1607, 1578, 1486, 1435, 1350, 1309, 1215, 1170, 1081, 1047; GC-MS (GC condition: injector: 280 °C; column: DB5 column 30 m \times 0.25 mm, temperature programming: 60 °C (2 min), 20 °C/min to 280 °C, 280 °C (30 min); detector: 280 °C) (70 ev, EI) m/z (%) for **4c**: T_R 6.0 min: 310 (M⁺+1, 23.11), 309 (M⁺, 100), for **3c**: T_R 6.1 min: 310 $(M^{+}+1, 26.36), 309 (M^{+}, 100);$ Elemental analysis calcd (%) for C₂₁H₂₇NO: C, 81.51; H, 8.79; N, 4.53; Found: C, 81.47; H, 8.85; N, 4.56.

(4) 4-Butyl-2,3,6,9-tetramethyl-9H-carbazole (4e) qya-5-068

The reaction of PtCl₄ (17.1 mg, 0.05 mmol) and 2e (297.6 mg, 1.0 mmol) in toluene (10 mL) at -10 °C for 12 h afforded 4e and 3e (215.1 mg, 77%, petroleum ether/ethyl acetate = 50/l) (the ratio of 4e : 3e (91 : 9) as determined by ¹H NMR analysis of the crude product) as a solid: m. p. 72~74 °C (*n*-hexane/ethyl acetate); 1 H NMR of 4e (300 MHz, CDCl₃) δ 7.90 (s, 1H, ArH), 7.25-7.20 (m, 2H, ArH), 7.03 (s, 1H, ArH), 3.71 (s, 3H, NCH₃), 3.25 (t, J = 8.1 Hz, 2H, ArCH₂), 2.54 (s, 3H, ArCH₃), 2.47 (s, 3H, ArCH₃), 2.35 (s, 3H, ArCH₃), 1.83-1.51 (m, 4H, $2 \times CH_2$), 1.05 (t, J = 7.2Hz, 3H, CH₃); the following signals are discernible for 3e: 7.83 (s, 1H, ArH), 7.20-7.17 (m, 2H, ArH), 6.81 (s, 1H, ArH), 4.01 (s, 3H, NCH₃), 3.12 (t, J = 8.0 Hz, 2H, ArCH₂), 2.67 (s, 3H, ArCH₃), 2.42 (s, 3H, ArCH₃); ¹³C NMR of 4e (75 MHz, CDCl₃) & 139.9, 139.4, 136.2, 134.9, 127.5, 125.5, 124.7, 123.1, 122.3, 119.0, 107.7, 107.2, 31.4, 30.3, 28.8, 23.4, 22.2, 21.7, 14.5, 14.1; the following signals are discernible for **3e**: 141.5, 140.9, 135.2, 134.3, 127.9, 125.7, 123.2, 122.8, 119.9, 116.1, 108.2, 38.8, 33.4, 32.0, 23.0, 21.6, 20.7, 15.2; IR (neat) v (cm⁻¹) 2955, 2923, 2871, 2858, 1625, 1606, 1576, 1488, 1376, 1365, 1303, 1281, 1213, 1146, 1109, 1005; GC-MS (GC condition: injector: 280 °C; column: DB5 column 30 m \times 0.25 mm, temperature programming: 60 °C (2 min), 20 °C/min to 280 °C, 280 °C (30 min); detector: 280 °C) (70 ev, EI) m/z (%) for 4e: T_R 7.2 min: 280 (M⁺+1, 22.58), 279 (M⁺, 100), for **3e**: T_R 7.3 min: 280 (M⁺+1, 21.54), 279 (M⁺, 100); Elemental analysis calcd

(%) for C₂₀H₂₅N: C, 85.97; H, 9.02; N, 5.01; Found: C, 85.63; H, 9.13; N, 5.15.

C₄H_g C_4H_9 C_4H_9 Me PtCl₄ (5 mol %) Me Me Me Toluene, 18 h, -10 °C Мe Ċ₄H₉ Ċ₄H₉ ÔΗ 78% Ċ₄H₉ 3f 4f 2f 4f:3f=89:11

(5) 4,9-Dibutyl-2,3-dimethyl-9*H*-carbazole (4f) qya-5-084

The reaction of PtCl₄ (17.1 mg, 0.05 mmol) and 2f (325.6 mg, 1.0 mmol) in toluene (10 mL) at -10 °C for 18 h afforded 4f and 3f (239.4 mg, 78%) (petroleum ether/dichloromethane = 30/1) (the ratio of 4f : 3f (89 : 11) as determined by ¹H NMR analysis of the crude product) as a solid; m. p. 62~64 °C (n-hexane/ethyl acetate); ¹H NMR of **4f** (300 MHz, CDCl₃) δ 8.11 (d, J = 8.1 Hz, 1H, ArH), 7.44-7.33 (m, 2H, ArH), 7.23-7.16 (m, 1H, ArH), 7.07 (s, 1H, ArH), 4.22 (t, J = 7.2 Hz, 2H, NCH_2), 3.26 (t, J = 8.3 Hz, 2H, ArCH₂), 2.48 (s, 3H, ArCH₃), 2.36 (s, 3H, ArCH₃), 1.88-1.50 (m, 6H, $2 \times CH_2$), 1.49-1.31 (m, 2H, CH₂), 1.03 (t, J = 7.2 Hz, 3H, CH₃), 0.93 (t, J = 7.4 Hz, 3H, CH₃), the following signals are discernible for **3f**: 8.06 (d, J =7.8 Hz, 1H, ArH), 6.85 (s, 1H, ArH), 4.45 (t, J = 7.8 Hz, 2H, NCH₂), 3.14 (t, J = 7.8Hz, 2H, ArCH₂), 2.64 (s, 3H, ArCH₃), 2.45 (s, 3H, ArCH₃); ¹³C NMR of **4f** (75 MHz, CDCl₃) § 140.5, 139.0, 136.3, 134.9, 124.8, 124.2, 123.0, 122.1, 119.2, 118.3, 108.3, 107.4, 42.5, 31.4, 31.0, 30.4, 23.4, 22.3, 20.6, 14.5, 14.1, 13.9, the following signals are discernible for **3f**: 141.7, 140.1, 135.2, 134.4, 124.3, 123.1, 122.2, 120.1, 118.8, 115.7, 108.7, 45.1, 33.9, 32.6, 32.0, 23.0, 21.0, 20.2, 14.8; IR (KBr) v (cm⁻¹) 2956, 2929, 2871, 1621, 1598, 1481, 1464, 1377, 1359, 1329, 1314, 1275, 1174, 1112, 1030, 1004; GC-MS (GC condition: injector: $280 \,^{\circ}$ C; column: DB5 column 30 m × 0.25 mm, temperature programming: 60 °C (2 min), 20 °C/min to 280 °C, 280 °C (30 min); detector: 280 °C) (70 ev, EI) m/z (%) for **4f**: T_R 5.80 min: 308 (M⁺+1, 20.06), 307 (M⁺, 81.77), 264 (100), for **3f**: T_R 5.82 min: 308 (M⁺+1, 13.60), 307 (M⁺, 55.51), 264 (100); Elemental analysis calcd (%) for C₂₂H₂₉N: C, 85.94; H, 9.51; N, 4.56; Found: C, 85.64; H, 9.67; N, 4.74.

(6) 9-Ethyl-2,3,6-trimethyl-4-phenyl-9*H*-carbazole (4h) qya-5-071

The reaction of PtCl₄ (8.9 mg, 0.026 mmol) and **2h** (166.0 mg, 0.5 mmol) in toluene (5 mL) at -10 °C for 72 h afforded **4h** and **3h** (121.8 mg, 78%) (petroleum ether/ethyl acetate = 50/l) (the ratio of **4h** : **3h** (93 : 7) as determined by ¹H NMR analysis of the crude product), which was further purified by recrystallization to afford **4h** and **3h** (95.3 mg, 61%, **4h** : **3h** = 97 : 3 as determined by ¹H NMR analysis) as a solid; m. p. 164~166 °C (*n*-hexane/ethyl acetate); ¹H NMR of **4h** (300 MHz, CDCl₃) δ 7.58-7.45 (m, 3H, ArH), 7.42-7.33 (m, 2H, ArH), 7.25-7.18 (m, 2H, ArH), 7.12 (d, *J* = 9.0 Hz, 1H, ArH), 6.40 (s, 1H, ArH), 4.33 (q, *J* = 7.2 Hz, 2H, NCH₂), 2.53 (s, 3H, ArCH₃), 2.21 (s, 3H, ArCH₃), 2.14 (s, 3H, ArCH₃), 1.42 (t, *J* = 7.2 Hz, 3H, CH₃); the following signals are discernible for **3h**: 2.75 (s, 3H, ArCH₃), 2.27 (s, 3H, ArCH₃); ¹³C NMR of **4h** (75 MHz, CDCl₃) δ 141.2, 138.4, 138.3, 136.4, 134.7, 129.4, 128.6, 127.2, 127.0, 125.8, 124.8, 123.2, 121.9, 119.6, 108.4, 107.5, 37.3, 21.8, 21.4, 16.1, 13.7; IR (KBr) v (cm⁻¹) 3054, 3024, 2973, 2919, 1622, 1603, 1575, 1486, 1471,

1379, 1349, 1305, 1219, 1146, 1082, 1065, 1023; GC-MS (GC condition: injector: 280 °C; column: DB5 column 30 m × 0.25 mm, temperature programming: 60 °C (2 min), 20 °C/min to 280 °C, 280 °C (30 min); detector: 280 °C) (70 ev, EI) m/z (%) for **4h**: T_R 7.6 min: 314 (M⁺+1, 25.95), 313 (M⁺, 100), for **3h**: T_R 7.8 min: 314 (M⁺+1, 26.03), 313 (M⁺, 100); Elemental analysis calcd (%) for C₂₃H₂₃N: C, 88.13; H, 7.40; N, 4.47; Found: C, 87.82; H, 7.45; N, 4.55.

		Mdd 0
32,436 730,457 730,572 78,72 81,352 605,572 602,02 604,81 604,81 78,52		 20
		 40
83.619 77.424 77.000 76.574 75.889 75.889	C ₄ H ₉ C ₄ H ₉ 2r Qya-5-078	 80
284.001 602.001		 100
996.721 136.121 177.021	CDCI3, y 25 06:20:16 2012 mmr ENT: ment = 29pg30 ment = 9,500 usec e delay = 2,000 sec 82 = 32768 = 32768 1.0000 MHz 1.00000 MHz 1.00000 MHz 1.00000 MHz	 120
995.261	spect, SUSER SUSER Reuse NA = SV1 = SV1 =	 140
		160

S39

819.0 000.0 000.0

- 0.939 - 1.343 - 1.367 - 1.367

- 1.431 - 1.431

1.528 1.528 1.514 1.514 1.514 1.454

7£ð.1

010.1 1.601 4.601 8.63.1 8.63.1

829.1

099'L 129'L 618'L 618'L

1.931 288.1 288.1 242 1.860 1.860

996'l 996'l 966'l

2.200 4.206 4.206 4.206 4.208 2.253 2.253 2.253 2.253 2.253 2.253 2.253 2.253 2.253 2.253 2.253 2.253 2.253 2.253 2.253 2.2555 2.2555 2.2555 2.2555 2.2555 2.2555 2.2555 2.2555 2.2555 2.2555 2.2555 2.2555 2.2555 2.2555 2.2555 2.25555 2.2555 2.2555 2.2555 2.2555 2.2555 2.25555 2.25555 2.25555 2.25555 2.25555 2.25555 2.25555

4.302 4.302

4.328

4'433 997'7

417.1 987.1 ₽97.1 £87.1 1.792 £08.1 818.1 1.836 9**4**8.1 2.432 2.655 2.555 2.725 2.725 2.725 3.357 3.357 5.233 5.233 4.305 4.328 4.352 975.4 895.4 169.4 919.4 4'639

1.1640 1.155 1.152 1.152 1.152 1.152 1.152 1.152

989.1 299.1

S71

