Supporting Information for

N-Alkylation of Indole *via* Ring-Closing Metathesis/Isomerization/Mannich Cascade under

Ruthenium/Chiral Phosphoric Acid Sequential Catalysis

Yan-Chao Shi^a, Shou-Guo Wang^a, Qin Yin^a, and Shu-Li You*^a

^a State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China Fax (+86) 21-54925087; E-mail: <u>slyou@sioc.ac.cn</u>

Table of Contents

General methods	S2
Procedures for preparation of substrate 1	S3
Complete optimization data	S3
General procedure for asymmetric cascade reaction	S4
References	S 8
Copies of NMR spectra and HPLC	S10

General Methods. Unless stated otherwise, all reactions were carried out in flame-dried glassware under a dry argon atmosphere. All solvents were purified and dried according to standard methods prior to use. ¹H and ¹³C NMR spectra were recorded on a Varian instrument (300 MHz and 75 MHz, 400 MHz and 100 MHz, respectively) and internally referenced to tetramethylsilane signal or residual protio solvent signals. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, br = broad singlet, coupling constant(s) in Hz, integration). Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm).

Procedures for preparation of substrate 1

N-allyl-benzyl-amine was synthesized from allylamine and benzyl bromide according to reported procedures.¹

Synthesis of diene **1**: A solution of acryloylchloride (2.0 g, 22.4 mmol) in dichloromethane was added dropwise to a mixture of *N*-allyl-benzyl-amine (3.0 g, 20.4 mmol) and triethylamine (2.5 g, 24.5 mmol) in dried dichloromethane (50 mL) at 0 °C. The reaction was stirred at 0 °C for 1 h and then warmed to r.t. for 2 h. Then the reaction mixture was quenched with aqueous NaHCO₃, the dichloromethane layer was washed with brine, dried over Na₂SO₄ and filtrated. After the solvent was removed under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate / petroleum = 1/10, v/v) to afford **1** (4.0 g, 98% yield). ¹H NMR (300 MHz, CDCl₃) δ 3.90 (m, *J* = 2.4 Hz, 1H), 4.07 (m, *J* = 5.7 Hz, 1H), 4.58 (s, 1H), 4.66 (s, 1H), 5.11-5.29 (m, 2H), 5.67-5.83 (m, 2H), 6.45 (dd, *J_I* = 2.4 Hz, *J₂* = 16.5 Hz, 1H), 6.55 (dd, *J_I* = 9.9 Hz, *J₂* = 16.8 Hz, 1H), 7.17-7.38 (m, 5H). Spectroscopic data were in agreement with those previously reported.²

Complete optimization data

N Bn	+	Zhan-1 (S)-4a tolu	B (5 mol%) (5 mol%) uene	N N N Bn
1	2a			3a Ö
entry ^a	temp (°C)	time (day)	yield $(\%)^b$	$ee (\%)^c$
1	rt	3	23	78
2	rt	7	52	78

Table 1. Conditions Optimization

^{*a*} Reaction conditions: **1** (0.2 mmol), **2a** (1.2 equiv), **Zhan-1B** (5 mol%), **4** or **5** (5 mol%) in 1.5 mL toluene. ^{*b*} Isolated yield. ^{*c*} Determined by HPLC analysis.

General procedure for asymmetric cascade reaction

Under argon, a round bottom flask was charged with *N*-allyl-*N*-benzylacrylamide **1** (0.20 mmol), indole **2** (0.24 mmol), and chiral phosphoric acid (*R*)-**5c** (7.2 mg, 0.01 mmol), then dry toluene (1.5 mL) were added. The mixture was heated to 50 °C and then **Zhan-1B** (7.3 mg, 0.01 mmol) was added. The reaction was stirred 50 °C for 24 h. After the reaction was complete (monitored by TLC), the solvent was removed under reduced pressure. The residue was purified by flash chromatography to afford the product **3**.

(*R*)-1-benzyl-5-(1*H*-indol-1-yl)pyrrolidin-2-one³

White solid (44.1 mg, 76% yield, 92% *ee*). Analytical data for **3a**: Mp = 41-43 °C; $[\alpha]_D^{20} = 105.4$ (c = 0.2 CH₂Cl₂, 92% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 2.18-2.26 (m, 1H), 2.52-2.71 (m, 2H), 2.77-2.89 (m, 1H), 3.31 (d, J = 14.7 Hz, 1H), 5.07 (d, J = 15.0 Hz, 1H), 5.77-5.80 (m, 1H), 6.60 (d, J = 3.0 Hz, 1H), 7.02-7.13 (m, 4H), 7.13-7.17 (m, 2H), 7.26-7.30 (m, 3H), 7.64-7.67 (m, 1H); The enantiomeric excess was determined by Daicel Chiralcel AD-H (25 cm), Hexanes / IPA = 90 / 10, 0.6 mL/min, $\lambda = 254$ nm, t (major) = 13.41 min, t (minor) = 15.46 min.

(R)-1-benzyl-5-(5-methyl-1*H*-indol-1-yl)pyrrolidin-2-one³

White solid (38.5 mg, 63% yield, 94% *ee*). Analytical data for **3b**: Mp = 34-36 °C; $[\alpha]_D^{20} = 118.8 (c = 0.2 \text{ CH}_2\text{Cl}_2, 94\% ee)$. ¹H NMR (300 MHz, CDCl₃) δ 2.18-2.26 (m, 1H), 2.47 (s, 3H), 2.53-2.68 (m, 2H), 2.76-2.89 (m, 1H), 3.30 (d, *J* = 14.7 Hz, 1H), 5.08 (d, *J* = 14.7 Hz, 1H), 5.73-5.76 (m, 1H), 6.53 (d, *J* = 3.0 Hz, 1H), 6.98-7.01 (m, 3H), 7.02-7.08 (m, 2H), 7.26-7.30 (m, 3H), 7.49 (s, 1H). The enantiomeric excess was determined by Daicel Chiralcel AD-H (25 cm), Hexanes / IPA = 95 / 5, 1.0 mL/min, λ = 254 nm, t (major) = 12.94 min, t (minor) = 14.23 min.

(R)-1-benzyl-5-(5-methoxy-1*H*-indol-1-yl)pyrrolidin-2-one³

White solid (55.3 mg, 86% yield, 93% *ee*). Analytical data for **3c**: Mp = 94-96 °C; $[\alpha]_D^{20} = 102.0 \text{ (c} = 0.2 \text{ CH}_2\text{Cl}_2, 93\%$ *ee* $). ¹H NMR (300 MHz, CDCl_3) & 2.09-2.20 (m, 1H), 2.41-2.60 (m, 2H), 2.67-2.79 (m, 1H), 3.22 (d,$ *J*= 14.4 Hz, 1H), 3.77 (s, 3H), 4.98 (d,*J*= 14.7 Hz, 1H), 5.61-5.64 (m, 1H), 6.43 (d,*J*= 2.1 Hz, 1H), 6.76 (d,*J* $= 8.1 Hz, 1H), 6.87-6.90 (m, 2H), 6.98 (brs, 2H), 7.03 (s, 1H), 7.20 (brs, 3H). The enantiomeric excess was determined by Daicel Chiralcel OD-H (25 cm) (25 cm), CH₃CN / IPA = 90 / 10, 1.0 mL/min, <math>\lambda = 254$ nm, t (major) = 28.86 min, t (minor) = 48.99 min.

(R)-1-benzyl-5-(5-bromo-1*H*-indol-1-yl)pyrrolidin-2-one³

White solid (51.3 mg, 70% yield, 88% *ee*). Analytical data for **3d**: Mp = 40-42 °C; $[\alpha]_D^{20} = 67.8$ (c = 0.2 CH₂Cl₂, 88% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 2.17-2.29 (m, 1H), 2.54-2.72 (m, 2H), 2.78-2.90 (m, 1H), 3.31 (d, *J* = 14.4 Hz, 1H), 5.18 (d, *J* = 15.0 Hz, 1H), 5.74-5.76 (m, 1H), 6.56 (d, *J* = 2.7 Hz, 1H), 6.94 (d, *J* = 8.7 Hz, 1H), 7.04-7.05 (m, 3H), 7.29-7.31 (m, 4H), 7.80 (s, 1H). The enantiomeric excess was determined by Daicel Chiralcel AD-H (25 cm), Hexanes / IPA = 90 / 10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 11.43 min, t (minor) = 13.49 min.

(R)-1-benzyl-5-(4-bromo-1*H*-indol-1-yl)pyrrolidin-2-one³

White solid (24 mg, 33% yield, 90% *ee*). Analytical data for **3e**: Mp = 108-110 °C; $[\alpha]_D^{20} = 83.8$ (c = 0.2 CH₂Cl₂, 90% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 2.17-2.24 (m, 1H), 2.55-2.71 (m, 2H), 2.77-2.89 (m, 1H), 3.30 (d, J = 14.7 Hz, 1H), 5.06 (d, J = 14.7 Hz, 1H), 5.71-5.75 (m, 1H), 6.66 (d, J = 3.3 Hz, 1H), 7.02-7.04 (m, 4H), 7.07-7.08 (d, J = 3.6 Hz, 1H), 7.26-7.34 (m, 4H). The enantiomeric excess was determined by Daicel Chiralcel IA (25 cm), Hexanes / IPA = 90 / 10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 10.42 min, t (minor) = 11.33 min.

(R)-1-benzyl-5-(6-chloro-1H-indol-1-yl)pyrrolidin-2-one³

White solid (33.4 mg, 52% yield, 93% *ee*). Analytical data for **3f**: Mp = 97-99 °C; $[\alpha]_D^{20} = 155.7 \text{ (c} = 0.2 \text{ CH}_2\text{Cl}_2, 93\% ee}$. ¹H NMR (300 MHz, CDCl₃) δ 2.17-2.23 (m, 1H), 2.55-2.70 (m, 2H), 2.76-2.87 (m, 1H), 3.32 (d, J = 14.4 Hz, 1H), 5.05 (d, J = 15.0 Hz, 1H), 5.69-5.71 (m, 1H), 6.58 (d, J = 3.0 Hz, 1H), 7.00-7.02 (m, 4H), 7.11 (d, J = 8.4 Hz, 1H), 7.28-7.30 (m, 3H), 7.53 (d, J = 8.4 Hz, 1H). The enantiomeric excess was determined by Daicel Chiralcel AD-H (25 cm), Hexanes / IPA = 90 / 10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 16.32 min, t (minor) = 18.70 min.

(*R*)-1-benzyl-5-(2-methyl-1*H*-indol-1-yl)pyrrolidin-2-one³

White solid (40.5 mg, 67% yield, 95% *ee*). Analytical data for **3g**: Mp = 39-41 °C; $[\alpha]_D^{20} = 126.9$ (c = 0.2 CH₂Cl₂, 95% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 1.91 (s, 3H), 2.38-2.55 (m, 2H), 2.61-2.78 (m, 1H), 2.82-2.93 (m, 1H), 3.17 (d, *J* = 15.0 Hz, 1H), 5.16 (d, *J* = 15.0 Hz, 1H), 5.65 (t, *J* = 6.9 Hz, 1H), 6.22 (s, 1H), 6.88-7.04 (m, 2H), 7.08-7.15 (m, 3H), 7.20-7.30 (m, 3H), 7.53-7.56 (m, 1H). The enantiomeric excess was determined by Daicel Chiralcel IC (25 cm), CH₃CN / IPA = 90 / 10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 23.62 min, t (minor) = 18.69 min.

(*R*)-1-benzyl-5-(3-methyl-1*H*-indol-1-yl)pyrrolidin-2-one³

White solid (56.0 mg, 92% yield, 85% *ee*). Analytical data for **3h**: Mp = 75-77 °C; $[\alpha]_D^{20} = 90.2$ (c = 0.2 CH₂Cl₂, 85% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 2.19-2.21 (m, 1H), 2.32 (s, 3H), 2.54-2.68 (m, 2H), 2.79-2.82 (m, 1H), 3.35 (d, *J* = 15.0 Hz, 1H), 5.03 (d, *J* = 14.7 Hz, 1H), 5.73-5.77 (m, 1H), 6.79 (s, 1H), 7.02-7.06 (m, 3H), 7.16-7.19 (m, 2H), 7.26-7.29 (m, 3H), 7.57-7.60 (m, 1H). The enantiomeric excess was determined by Daicel Chiralcel OJ-H (25 cm), Hexanes / IPA = 90 / 10, 0.8 mL/min, $\lambda = 254$ nm, t (major) = 24.01 min, t (minor) = 35.22 min.

(*R*)-1-benzyl-5-(2,3-dimethyl-1*H*-indol-1-yl)pyrrolidin-2-one³ White solid (54.2 mg, 85% yield, 89% *ee*). Analytical data for **3i**: Mp = 90-92 °C; $[\alpha]_D^{20} = 128.7$ (c = 0.2 CH₂Cl₂, 89% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 1.90 (s, 3H), 2.25 (s, 3H), 2.30-2.55 (m, 2H), 2.60-2.94 (m, 2H), 3.22 (d, *J* = 14.4 Hz, 1H), 5.16 (d, *J* = 15.0 Hz, 1H), 5.69 (dd, *J*₁ = 6.6 Hz, *J*₂ = 7.8 Hz, 1H), 6.89-7.08 (m, 2H), 7.12-7.22 (m, 3H), 7.24-7.32 (m, 3H), 7.51-7.56 (m, 1H). The enantiomeric excess was determined by Daicel Chiralcel AD-H (25 cm), Hexanes / IPA = 90 / 10, 1.0 mL/min, λ = 254 nm, t (major) = 7.01 min, t (minor) = 7.77 min.

(*R*)-1-benzyl-5-(3,4-dihydro-1*H*-carbazol-9(2*H*)-yl)pyrrolidin-2-one³

White solid (59.1 mg, 86% yield, 85% *ee*). Analytical data for **3j**: Mp = 88-90 °C; $[\alpha]_D^{20} = 113.5$ (c = 0.2 CH₂Cl₂, 85% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 1.61-1.85 (m, 5H), 2.10-2.49 (m, 2H), 2.52-2.70 (m, 4H), 2.74-2.85 (m, 1H), 3.10 (d, *J* = 14.7 Hz, 1H), 5.05 (d, *J* = 14.7 Hz, 1H), 5.52 (t, *J* = 7.2 Hz, 1H), 6.84-6.96 (m, 2H), 7.03-7.13 (m, 3H), 7.17-7.22 (m, 3H), 7.42-7.43 (m, 1H). The enantiomeric excess was determined by Daicel Chiralcel OD-H (25 cm), Hexanes / IPA = 90 / 10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 12.99 min, t (minor) = 11.32 min.

References

- 1. S. Mukherjee and B. List, J. Am. Chem. Soc. 2007, 129, 11336.
- (a) I. D. Riggi, S. Gastaldi, J.-M. Surzur, M. P. Bertrand and A. Virgili, J. Org. Chem. 1992, 57, 6118. (b) E. Benedetti, M. Lomazzi, F. Tibiletti, P. Giovanni, J.-P.

Goddard, M. Fensterbank, G. Palmisano and A. Penoni, Synthesis 2012, 44, 3523.

 Y. Xie, Y. Zhao, B. Qian, L. Yang, C. Xia and H. Huang, *Angew. Chem., Int. Ed.* 2011, **50**, 5682. 4. Copies of NMR spectra and HPLC

PeakNo	R. Time	PeakHeight	PeakArea	PerCent
1	13.407	285164.000	4717633.000	96.1673
2	15.457	9887.956	188021.453	3.8327
Total		295051.956	4905654.453	100.0000

Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers This journal is The Partner Organisations 2014

_			0		
•	1	12.943	62078.340	869354.688	97.0860
	2	14.235	1261.047	26093.732	2.9140
•	Total		63339. 387	895448.420	100.0000

8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 时间 (min) 2 4 6

PeakNo	R.Time	PeakHeight	PeakArea	PerCent
1	29.737	12173.564	1127747.625	50. 7893
2	47.625	4703.648	1092695.375	49.2107
Total		16877.213	2220443.000	100.0000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 时间(min)

PeakNo	R.Time	PeakHeight	PeakArea	PerCent
1	28.857	353637.375	34109952.000	96. 4071
2	48.990	5304.093	1271205.500	3. 5929
Total		358941.468	35381157.500	100.0000

	PeakNo	R.Time	PeakHeight	PeakArea	PerCent
•	1	11.432	80170.469	1360811.000	50.0118
	2	13.398	65333. 020	1360166.875	49.9882
-	Total		145503.488	2720977.875	100.0000

2	15. 495	8039.900	171975.109	5. 9001
Total		169895.685	2881550.859	100.0000

2	11. 555	52501. 547	940110.230	5. 1075
Total		1120985.297	18239118.250	100.0000

PeakNo	R.Time	PeakHeight	PeakArea	PerCent
1	16.735	413272.656	10126263.000	49. 2261
2	19.130	373819.750	10444643.000	50.7739
Total		787092.406	20570906.000	100.0000

	PeakNo	R.Time	PeakHeight	PeakArea	PerCent
	1	16.322	446545.344	11402348.000	96. 5969
_	2	18.698	14294.431	401697.750	3. 4031
-	Total		460839.774	11804045.750	100.0000

PeakNo	R. Time	PeakHeight	PeakArea	PerCent
1	18.682	23587.672	707969.938	49.7014
2	23.682	18678.090	716476. 625	50.2986
Total		42265.762	1424446.563	100.0000

PeakNo	R.Time	PeakHeight	PeakArea	PerCent
1	18.648	1928.792	53261.691	2.3793
2	23.622	57314.895	2185278.500	97.6207
Total		59243. 687	2238540.191	100.0000

PeakNo	R.Time	PeakHeight	PeakArea	PerCent
1	23.132	153642.109	14820001.000	49.9567
2	29.532	52119.984	14845718.000	50.0433
Total		205762.094	29665719.000	100.0000

PeakNo	R.Time	PeakHeight	PeakArea	PerCent
1	24.007	202406.531	19204228.000	92.2946
2	35.223	5498.350	1603293.500	7.7054
Total		207904.881	20807521.500	100.0000

1	7.132	1342126. 500	14265561.000	49.4600
2	7.915	1203448. 375	14577088.000	50.5400
Total		2545574.875	28842649.000	100.0000

PeakNo	R.Time	PeakHeight	PeakArea	PerCent	
1	11.565	65910.055	2328262.000	50.0113	
2	13.498	54349.348	2327212.000	49.9887	
Total		120259.402	4655474.000	100.0000	

_	PeakNo	R.Time	PeakHeight	PeakArea	PerCent
-	1	11.325	34248.852	1344506.875	7.5331
	2	12.993	402886.500	16503517.000	92.4669
-	Total		437135.352	17848023.875	100.0000