Supporting Information

Asymmetric Total Synthesis of (-)-Cebulactam A1

Shouliang Yang,[†] Yumeng Xi,[†] Jiahua Chen,^{*, †} Zhen Yang^{*,†,‡}

[†] Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry, Peking University, Beijing 100871, China

[‡] Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China

> E-mail: jhchen@pku.edu.cn zyang@pku.edu.cn

Tel: +86 10 6275 9105; fax: +86 10 6275 9105

Table of Contents:

General Information	- S3
Experimental Data for SmI ₂₋ mediated Reformatsky Reactions	S4
Comparison of NMR spectra with natural products	S7
NMR Spectra	S9
	27

General Information

Unless otherwise mentioned, all reactions were carried out under a nitrogen atmosphere using Schlenk techniques. Solvent purification was conducted according to *Purification of Laboratory Chemicals* (Peerrin, D. D.; Armarego, W. L. and Perrins, D. R., Pergamon Press: Oxford, 1980). Compound **6** was synthesized from L-Phenylglycinol according to literature.¹ Compound **7** was synthesized from 2-hydroxy-5-methoxybenzaldehyde according to literature.² All other reagents were purchased from commercial sources and used as received. Yields refer to chromatographically and spectroscopically (¹H NMR) homogeneous materials. Reactions were monitored by Thin Layer Chromatography on plates (GF254) supplied by Yantai Chemicals (China) using UV light as visualizing agent and iodine as developing agents. If not specially mentioned, flash column chromatography uses silica gel (200-300 mesh) supplied by Tsingtao Haiyang Chemicals (China).

NMR spectra were recorded on Bruker Ascend 500, Ascend 400 instruments. TMS was used as internal standard for ¹H NMR (0 ppm), solvent signal was used as reference for ¹³C NMR (CDCl₃ = δ 77.0 ppm, d₆-DMSO = δ 39.5 ppm). The following abbreaviations were used to explain the multiplicities: s = singlet, d = doublet, br = broad, dd = double doublet, m = multiplet. Infrared (IR) spectra were recorded on a Thermo Nicolet Avatar 330 FT-IR spectrometer. Mass spectra were recorded on a Bruker Apex IV FTMS mass spectrometer using ESI (electrospray ionization). Ultra Performance Liquid Chromatograph (UPLC) was performed on a UPLC SQD (Waters Technology) equipment.

- Nicolaou, K. C.; Guduru, R.; Sun, Y. P.; Banerji, B.; Chen, David Y.-K. Angew. Chem. Int. Ed. 2007, 46, 5896.
- 2. Panek, J. S.; Xu, F. J. Am. Chem. Soc. 1995, 117, 10587.

Investigation of SmI₂-mediated Reformatsky reaction. With **13** in hand, we proceeded to evaluate its performance in the SmI₂-mediated intramolecular Reformatsky reaction. The treatment of **13** with SmI₂ in THF under the optimized conditions¹ at a concentration of 0.005M under refluxing conditions gave the desired product **14** in 84% yield as a couple of diastereoisomers. Then detailed investigation of the key reaction was conducted with **13a**, the key intermediate in our previous synthesis¹, in hoping that we could further get insight into this key reaction. Treatment of **13a** under the typical condition gave the desired product **14a** as a mixture of two pairs of diastereoisomers at the C2 and C3 carbon centers in a ratio of 3.9:1:4.0:3.3 based on UPLC analysis (see SI). We then investigated the concentration effect² on the outcome of the annulation by carrying out the reaction at a substrate concentration of 0.017 M. At this concentration, compound **14a** was obtained in 82% yield, indicating that the reductive annulation reaction was independent of the substrate concentration.

A variety of different solvents were tested to evaluate their effect on the outcome of the reductive annulation. The use of benzene² as a solvent gave the desired product **14** in approximately 50% yield, whereas the use of protic solvents³ such as MeOH and *n*-BuOH, did not give any of the desired product. Based on these results, it was proposed that the reaction was proceeding via a samarium enolate intermediate⁴ which would effectively mediate the ring contraction⁵ reaction to afford the annulated products (Table 1).

^aisolated yield; ^bratio of the diastereoisomers was determined by UPLC.

Table 1. SmI₂-mediated Reformatsky reaction

Experimental Data for SmI₂-mediated Reformatsky Reaction

Entry 1: To a solution of SmI₂ (1.8 mL, 0.1 M in THF, 0.18 mmol) was added 13a (17.4 mg, 0.031 mmol) in dry THF (0.2 mL), and the mixture was stirred at the same temperature for 2 h. The reaction was quenched by addition of a saturated aqueous solution of NH₄Cl (3 mL) at room temperature, and the mixture was extracted with ethyl acetate (3 x 3 mL). The combined organic layers were washed with brine (10 mL), and then dried over anhydrous Na₂SO₄. The solvent was removed under vacuum, and the residue was purified by a flash column chromatography on silica gel (hexane/ethyl acetate = 2:1 to 1:1) to give product 14a (12.2 mg, 82%) as a mixture of four diastereoisomers. R_f = 0.28, 0.30, 0.50, 0.60 (hexane/ethyl acetate = 1:2). The ratio of four diastereoisomers was determined by UPLC: 4.6/1.0/4.0/3.3.

Entry 2 To a solution of SmI₂ (60 mL, 0.1 M in THF, 6.0 mmol) in anhydrous THF (130 mL) was slowly added 13a (0.55 g, 0.98 mmol) in (5 mL) under refluxing conditions in a dropwise manner, the reaction mixture was then stirred at the same temperature for 2 h. The reaction was quenched by addition of a saturated aqueous solution of NH₄Cl (50 mL) at room temperature, and the mixture was extracted with ethyl acetate (3 x 50 mL). The combined organic layers were washed with brine (50 mL), and then dried over anhydrous Na₂SO₄. The solvent was removed under vacuum, and the residue was purified by a flash column chromatography on silica gel (hexane/ethyl acetate = 2:1 to 1:2) to give product 14a (0.397 g, 84%) as a mixture of diastereoisomers. $R_f = 0.28$, 0.30, 0.50, 0.60 (hexane/ethyl acetate = 1:2). The ratio of four diastereoisomers was determined by UPLC: 3.9/1.0/4.0/3.3.

Entry 3: Benzene (3 mL) was degassed by bubbling N₂ for 0.5 h, followed by addition of a solution of SmI₂ (0.9 mL, 0.1 M in THF, 0.09 mmol). To this solution was a solution od **13a** (8.7 mg, 0.0155 mmol) in dry benzene (0.2 mL) at refluxing conditions in a dropwise manner, and the reaction mixture was stirred at the same temperature for 2 h. The reaction was quenched by addition of a saturated solution of NH₄Cl (3 mL) at room temperature, and the resultant mixture was extracted with ethyl acetate (3 x 3 mL). The combined organic layers were washed with brine (10 mL), and then dried over anhydrous Na₂SO₄. The solvent was removed under vacuum, and the residue was purified by a flash column chromatography on silica gel (hexane/ethyl acetate = 2:1 to 1:1) to give product **14a** (4.0 mg, 53%) as a mixture of four diastereoisomers. R_f = 0.28, 0.30, 0.50, 0.60 (hexane/ethyl acetate = 1:2). The ratio of four diastereoisomers was determined by UPLC: 3.4/1.0/13.4/8.6.

Entry 4: MeOH (3 mL) was degassed with N_2 for 0.5 h, followed by addition of a solution of SmI₂ (1 mL, 0.1 M in THF, 0.10 mmol). To this solution was added a solution of **13a** (10 mg, 0.018 mmol) in dry MeOH (0.2 mL) under refluxing conditions in a dropwise manner, and the reaction mixture was then stirred at the same temperature for 2 h. The reaction was quenched by addition of a

saturated solution of NH₄Cl (3 mL), and the resultant mixture was extracted with ethyl acetate (3 x 3 mL). The combined organic layers were washed with brine (10 mL), and then dried over anhydrous Na₂SO₄. The solvent was removed under vacuum, and no desired product was detected on UPLC.

Entry 5: *n*BuOH (3.2 mL) was degassed with N_2 for 0.5 h, followed by addition of a solution of SmI₂ (1 mL, 0.1 M in THF, 0.10 mmol). To this solution was added a solution of **13a** (9 mg, 0.016 mmol) in dry *n*BuOH (0.2 mL) under refluxing conditions in a dropwise manner, and reaction mixture was stirred at the same temperature for 2 h. The reaction was quenched by addition of a saturated solution of NH₄Cl (3 mL), and the resultant mixture was extracted with ethyl acetate (3 x 3 mL). The combined organic layers were washed with brine (10 mL), and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum, and no desired product was detected on UPLC.

Reference:

- 1: Yang, S.-L.; Xi, Y.-M.; Zhu, R.; Wang, L.; Chen, J.-H.; Yang, Z. Org. Lett. 2013, 15, 812.
- 2: Tamiya, H.; Goto, K.; Matsuda, F. Org. Lett. 2004, 6, 545.
- 3: Kunishima, M.; Tanaka, S.; Kono, K.; Hioki, K.; Tani, S. Tetrahedron Lett. 1995, 36, 3707.
- 4: (a) Chopade, P. R.; Prasad, E.; Flowers, II, R. A. J. Am. Chem. Soc. 2004, 126, 44; (b) Kleiner, G.; Tarnopolsky, A.; Hoz, S. Org. Lett. 2005, 7, 4197.
- 5: Molander, G. A.; Etter, J. B. J. Am. Chem. Soc. 1987, 109, 6556.
- 6: Inanaga, J.; Yokoyama, Y.; Handa, Y.; Yamaguchi, M. Tetrahedron Lett. 1991, 32, 6371.

Comparison of NMR spectra with natural products (NMR spectroscopic data of Cebulactam A1 in acetone-d₆)

Note: the numbering was according to the original isolation paper.

Position	δ_H of Cebulactam A1	$\delta_{\rm H}$ of Cebulactam A1	
	(Synthesized, 400 MHz,	(Natural, 400 MHz,	
	δ in ppm, J in Hz,)	δ in ppm, J in Hz)	
1	4.38 (d, <i>J</i> = 10.1)	$4.38 (dd, J = 10.0, 6.4)^{a}$	
2	1.82 (m)	1.82 m	
Me-2	1.19 (d, J = 6.6)	1.20 (d, J = 6.4)	
3	4.27 (d, <i>J</i> = 8.5)	4.27 (d, J = 8.5)	
Me-4	1.86 (s)	1.87 (d, $J = 1.6$)	
5	4.98 (d, J = 9.8)	5.00 (dd, <i>J</i> = 10.0, 1.0)	
6	3.19 (m)	3.19 m	
Me-6	1.00 (d, J = 6.3)	1.01 (d, J = 6.8)	
8	3.43 (q, J = 6.8)	3.42 (q, J = 6.8)	
Me-8	1.21 (d, J = 6.8)	1.22 (d, J = 6.8)	
13	7.02 (d, $J = 2.8$)	7.02 (d, J = 2.8)	
15	6.65 (d, J = 2.8)	6.65 (d, J = 2.8)	
NH	7.88 (br)	7.91 br	

¹H NMR Comparison:

Ref. a: Addition of a drop of D_2O could change dd peak into d (10.5)

¹³C NMR Comparison:

Position	δc of	δc of	δc of	δc difference between
	Cebulactam A1	Cebulactam A1	Cebulactam A1	synthesized (in ppm,
	(in ppm,	(in ppm,	(in ppm,	100 MHz) and
	literature,	Synthesized,	Synthesized,	literature
	100 MHz)	100 MHz)	125 MHz)	(in ppm, 100 MHz)
1	70.9	70.5	70.5	-0.4
2	42.4	41.9	41.9	-0.5
Me-2	16.7	16.2	16.2	-0.5
3	87.4	86.9	87.0	-0.5
4	140.5	140.0	140.0	-0.5
Me-4	19.3	18.8	18.8	-0.5
5	124.7	124.3	124.3	-0.4
6	46.2	45.6	45.6	-0.6
Me-6	17.8	17.3	17.3	-0.5
7	207.1	206.5	206.5	-0.6
8	48.2	47.8	47.8	-0.4
Me-8	16.6	16.1	16.1	-0.5
9	173.9	173.4	173.4	-0.5
10	131.0	130.5	130.5	-0.5
11	142.7	142.3	142.3	-0.4
12	140.9	140.4	140.4	-0.5
13	111.1	110.6	110.6	-0.5
14	154.4	153.9	153.9	-0.5
15	114.0	113.6	113.6	-0.4

