Supporting Information Highly Diasteroselective 1,3-Dipolar Cycloaddition Reactions of Carbonyl Ylides with Aldimines to Steric Disfavored cis-Oxazolidines

Xinfang Xu , Xin Guo, Xingchun Han, Liping Yang and Wenhao Hu*

Department of Chemistry, East China Normal University, Shanghai, 200062, China
E-mail: whu@chem.ecnu.edu.cn

Table of Contents

1. General \& Materials

2. General Procedure

3. NMR and HRMS(ESI) analysis data of substrates 4a-4j
4. General procedure for preparation of $\mathbf{5 a}$
5. General procedure for preparation of $\mathbf{8}$
6. References
7. X-ray data of $\mathbf{4 f}$
8. NMR analysis spectra of substrates $4 \mathbf{a}-\mathbf{4 j}, \mathbf{5 a}, \mathbf{6 , 7} \mathbf{7}$ and $\mathbf{8}$.

General: HRMS (ESI) Mass spectra were recorded on Bruker micrOTOF-II mass spectrometer. NMR spectra were recorded on a Brucker-400 MHz and Brucker-500 MHz spectrometer. X-ray was performed on Buker SMART APEX-II. Optical rotational data were performed on PerkinElmer PL-343.

Materials: Dichloromethane was distilled from calcium hydride. Diazo compounds $\mathbf{1}$ were prepared according to the literature procedure. ${ }^{[1]}$ Aldehyde 2 a was purified by recrystallization. Imines $\mathbf{3}$ were prepared by condensation of corresponding aldehydes and amines. ${ }^{[2]}$ Lewis acids were purchased from ACROS or Aldrich. Solvents for the column chromatography were distilled before using.

General Procedure for the selective 3+2 cycloaddition of diazo acetrate aldehydes

and imines (Table 2 in the manuscript):
To an flame-dried vial was charged with 2 (0.22 mmol), 3 (0.20 mmol), $4 \AA \mathrm{MS}$ (0.1 g), $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ ($2.0 \mathrm{~mol} \%$), co-catalyst ($10.0 \mathrm{~mol} \%$) and $1.5 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ under an argon atmosphere. The flask was cooled to $0^{\circ} \mathrm{C}$, and diazo $\mathbf{1}(0.22 \mathrm{mmol})$ in 0.5 $\mathrm{mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to the reaction mixture over 1 h period of time via a syringe pump. After completion of the addition, the reaction mixture was stirred for additional 30 mins. The crude products were subjected to ${ }^{1} \mathrm{H}$ NMR spectroscopy analysis for the determination of diastereoselectivity. The reaction mixture was purified by flash chromatography on silica gel (eluent: EtOAc : light petroleum ether $=1: 50$ to 1:20) to give the pure products $\mathbf{4}$ or $\mathbf{6}$.

(4b): yield 87%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): ~ \delta$ (ppm) $1.00(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$), 3.80-3.98 (m, 2H), 5.00 (d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.34$ (d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.28 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 6.56 (s, 1H), 6.66 (t, $J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.33 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.42 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.51(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}): \delta(\mathrm{ppm}) 13.78,61.38,63.23,78.14,91.23,113.98,117.99,122.33,123.40$, 128.87, 129.10, 129.60, 131.59, 131.97, 135.87, 136.86, 141.62, 166.78; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{Br}_{2} \mathrm{NNaO}_{3}(\mathrm{M}+\mathrm{Na})^{+} 553.9762$, found 553.9761.

(4c): yield 83%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): ~ \delta$ (ppm) $0.99(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$), 3.79-3.97 (m, 2H), 4.99 (d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.35$ (d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.28 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 6.56 (s, 1H), 6.65 (t, $J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.01-7.27 (m, 6H), 7.32 (d, J = 7.5 Hz, $2 \mathrm{H}), 7.51(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 100 MHz): $\delta(\mathrm{ppm}) 13.77,61.34,63.15,78.19$, 91.21, 113.97, 117.96, 123.37, 128.63 128.87, 129.07, 129.27, 131.96, 134.13, 135.33, 136.87, 141.63, 166.78; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{BrClKNO}_{3}(\mathrm{M}+\mathrm{K})^{+} 524.0025$, found 524.0048.

(4d): yield 82%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): ~ \delta$ (ppm) 1.04 (t, $J=9.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.85-4.01(\mathrm{~m}, 2 \mathrm{H})$, 4.98 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.28 (d, $J=11.0 \mathrm{~Hz}, 2 \mathrm{H}$), $6.57(\mathrm{~s}, 1 \mathrm{H}), 6.68$ (m, $1 \mathrm{H}), 7.04-7.52(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ MHz): δ (ppm) 13.80, 61.54, 62.72, 78.04, 91.21, 113.96, 118.25, 123.51, 127.15, 128.87, 129.24, 129.88, 130.54, 132.03, 132.49, 136.62, 137.33, 141.41, 166.56; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{BrCl}_{2} \mathrm{NNaO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$541.9896, found 541.9902.

(4e): yield 76%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta$ (ppm) $0.98(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.78-3.96(\mathrm{~m}, 2 \mathrm{H})$, 4.98 (d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.20(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~m}, 2 \mathrm{H})$, 7.14 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.26$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.42 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.51 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 13.78,61.46$, 63.37, 78.21, 91.32, 115.08, 122.58, 123.20, 123.64, 128.83, 129.07, 129.56, 131.72, 132.09, 135.37, 136.39, 140.26, 166.46; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{ClNNaO}_{3}$ $(\mathrm{M}+\mathrm{Na})^{+}$585.9391, found 585.9391.

(4f): yield 90%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): ~ \delta$ (ppm) $0.98(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.62$ (s, 3H), 3.78-3.96 (m, 2H), 5.01 (d, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.31$ (d, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~m}, 2 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 6.62$ (m, 2H), 7.15 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.32 (d, $J=8.5$ Hz, 2H), 7.40 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.49 (d, $J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta(\mathrm{ppm})$ 13.75, 55.41, 61.27, 63.62, 78.34, 91.57, 114.69, 115.04, 122.21, 123.28, 128.91, 129.66, 131.51, 131.89, 135.84, 136.04, 137.27, 152.03, 166.98; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{Br}_{2} \mathrm{NNaO}_{4}(\mathrm{M}+\mathrm{Na})^{+}$581.9886, found 581.9896.

(4g): yield 78\%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta$ (ppm) 1.02 (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.64$ (s, 3H), 3.82-3.97 (m, 2H), 5.01 (d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.31$ (d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.53(\mathrm{~s}$, $1 \mathrm{H}), 6.63(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.52(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta(\mathrm{ppm}) 7.13-7.52(\mathrm{~m}$, 8H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): δ (ppm) 13.78, 55.46, 61.38, 63.59, 78.35, 91.58, 114.75, 114.96, 122.45, 123.33, 126.51, 128.93, 130.06, 131.01, 131.39, 131.93, 135.79, 137.19, 139.46, 152.06, 166.88; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{Br}_{2} \mathrm{NNaO}_{4}(\mathrm{M}+\mathrm{Na})^{+} 581.9886$, found 581.9895.

(4h): yield 75%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta$ (ppm) $0.99(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.63$ (s, 3H), 3.74-3.96 (m, 2H), $5.10(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.95$ (d, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{~s}$, $1 \mathrm{H}), 6.63$ (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.07-7.55 (m, 8H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): δ (ppm) 13.66, 55.38 , 61.22, 62.29, 77.99, 91.74, 114.66, 115.22, 123.23, 124.41, 128.02, 129.02, 129.33, 129.68, 131.85, 132.60, 135.76, 136.02, 137.30, 152.02, 167.20; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{Br}_{2} \mathrm{NNaO}_{4}(\mathrm{M}+\mathrm{Na})^{+}$581.9886, found 581.9905 .

(4i): yield 89%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$: $\delta(\mathrm{ppm}) 0.99(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H})$, 3.75 (s, 3H), 3.78-3.96 (m, 2H), 5.00 (d, $J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, 2H), 6.80 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.20 (d, $J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta(\mathrm{ppm}) 13.81,55.13,55.43,61.10,63.70$, 78.60, 91.48, 113.75, 114.58, 115.01, 123.17, 128.68, 128.94, 129.10, 131.86, 136.24, 137.62, 151.77, 159.39, 167.28; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{BrNNaO}_{5}(\mathrm{M}+\mathrm{Na})^{+}$ 534.0887, found 534.0899.

(4j): yield 78\%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): ~ \delta$ (ppm) 0.97 (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.28$ (s, 3H), 3.63 (s, 3H), 3.76-3.95 (m, 2H), 5.01 (d, $J=6.0 \mathrm{~Hz}$, 1H), 5.33 (d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.26 (d, $J=9.0 \mathrm{~Hz}$, 2H), 6.52 (s, 1H), 6.61 (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.07$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.15$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$
NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta(\mathrm{ppm}) 13.73,21.12,55.45,61.10,64.05,78.60,91.59$, 114.61, 114.98, 123.18, 127.86, 128.96, 129.06, 131.89, 133.68, 136.30, 137.67, 137.85, 151.78, 167.28; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{BrNNaO}_{4}(\mathrm{M}+\mathrm{Na})^{+}$518.0937, found 518.0961.

Hydrolysis of the oxazolidine product:

The oxazolidine 4a (0.20 mmol) was dissolved in $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL}, 95: 5)$ and p-methylbenzene sulfonic acid (p-TSA, 0.25 mmol , in 0.5 mL MeOH) was added.

The resultant mixture was stirred at room temperature for about 1-2 h , and detected by TLC. Until the material was consumed, the solvents were removed under reduced pressure and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with NaHCO_{3} (sat.). The aqueous phase was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent: EtOAc : light petroleum ether $=1: 80$ to $1: 30$) to give the pure product 5a. Yield 92%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ MHz): δ (ppm) 1.26 (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$), 2.90 (d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.22$ (m, 2H), 4.66(s, 1H), 4.87 (m, 2H), 6.61-7.30 (m, 10H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta(\mathrm{ppm})$ 14.08, 59.57, 61.94, 73.56, 113.85, 117.96, 127.50, 127.99, 128.42, 129.16, 137.20, 146.27, 172.07; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3}(\mathrm{M})^{+}$285.1365, found 285.1368 .

(6a): yield 62\%; $[\alpha]_{D}^{20}=-42.5^{\circ}(c=1$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta(\mathrm{ppm})$ 0.53-1.60 (m, 19H), 4.49-4.54 (m, 1H), 4.99 (d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.31$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $6.55(\mathrm{~s}, 1 \mathrm{H}), 6.59-7.53$ (m, $12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): δ (ppm) 15.95, 20.82, 21.84, 23.01, 25.65, 31.17, 33.99, 40.39, 46.70, 63.80, 75.44, 78.07, 91.06, 114.06, 117.64, 123.30, 128.31, 128.49, 128.96, 129.05, 131.98, 136.72, 137.31, 141.99, 166.51; HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{BrNNaO}_{3}(\mathrm{M}+\mathrm{Na})^{+} 586.1756$, found 586.1729.

(6b): yield 66\%; $[\alpha]_{\mathrm{D}}^{20}=-34.0^{\circ}$ (c = 1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta(\mathrm{ppm})$ 0.55-1.60 (m, 19H), 3.61 ($\mathrm{s}, 3 \mathrm{H}$), 4.48-4.53 (m, $1 \mathrm{H}), 5.01$ (d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.33$ (d, $J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.26$ (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.51$ (s, 1H), 6.58 (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.20-7.32 (m, 5H), 7.36 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.50 (d, $J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm})$ 15.94, 20.76, 21.79, 22.99, 25.65, 31.11, 33.95, 40.29, 46.68, 55.41, 64.22, 75.29, 78.24, 91.38, 114.55, 115.07, 123.18, 128.19, 128.41, 128.51, 129.05, 131.89, 136.24, 136.83, 137.69, 151.80, 166.68; HRMS (ESI) calcd for $\mathrm{C}_{33} \mathrm{H}_{38} \mathrm{BrNNaO}_{4}(\mathrm{M}+\mathrm{Na})^{+}$614.1876, found 614.1917.

(6c): yield 73\%; $[\alpha]_{D}^{20}=-44.2^{\circ}(c=1$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta(\mathrm{ppm})$ 0.54-1.60 (m, 19H), $3.63(\mathrm{~s}, 3 \mathrm{H}), 4.52-4.53(\mathrm{~m}$, $1 \mathrm{H}), 5.00(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.23$ (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.49$ (s, 1H), $6.60(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 15.93,20.72$, 21.89, 23.00, 25.76, 31.15, 33.95, 40.41, 46.63, 55.47, 63.62, 75.58, 78.20, 91.42, 114.70, 115.17, 122.35, 123.34, 129.07, 130.24, 131.69, 131.96, 135.94, 136.12, 137.42, 152.06, 166.69; HRMS (ESI) calcd for $\mathrm{C}_{33} \mathrm{H}_{3} \mathrm{Br}_{2} \mathrm{NNaO}_{4}(\mathrm{M}+\mathrm{Na})^{+}$692.0982, found 692.0935 .

Reduction and hydrolysis of the chiral oxazolidine product:

The oxazolidine 5 (0.50 mmol) was dissolved in anhydrous THF (8 mL), and LAH (1.50 mmol) was added in portion under Ar at $0^{\circ} \mathrm{C}$. The resultant mixture was stirred at room temperature for about 1 h , and detected by TLC. Until the material was consumed, the reaction was quenched by sodium sulfate decahydrate (until no bubble was formed) and diluted with ethyl acetate (20 mL). Then the solid was removed by filtration and the liquid phase was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent: EtOAc : light petroleum ether $=1: 50$ to 1:5) to give the pure product 7. Yield 70\%; $[\alpha]_{D}^{20}=-7.0^{\circ} \quad(c=1$, EtOH) ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta(\mathrm{ppm}) 3.20-3.38(\mathrm{~m}, 2 \mathrm{H}), 4.58-4.62(\mathrm{~m}, 1 \mathrm{H})$, 5.17 (d, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.30$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.31$ (s, 1H), 6.57-7.45 (m, 12H); ${ }^{13}{ }^{2}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): δ (ppm) 62.11, 63.49, 78.90, 91.54, 113.80, 116.93, 127.16, 127.48, 127.88, 128.72, 128.86, 128.92, 137.77, 142.42; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NNaO}_{2}(\mathrm{M}+\mathrm{Na})^{+}$354.1470, found 354.1478.

The reduce product $7(0.25 \mathrm{mmol})$ was dissolved in $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL}, 95: 5)$ and p-TSA (0.31 mmol , in 0.5 mL MeOH) was added . The resultant mixture was stirred
at room temperature for about $1-2 \mathrm{~h}$, and detected by TLC. Until the material was consumed, the solvents were removed under reduced pressure and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with NaHCO_{3} (sat.). The aqueous phase was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent: EtOAc : light petroleum ether $=1: 10$ to $1: 1$) to give the pure product 8. Yield 95%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 2.71$ (bs, 1H), 3.53-3.68 (m, 2H), 4.00 (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.61 (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.55-7.34$ (m, 10H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta(\mathrm{ppm}) 60.63,63.53,73.92,113.87,117.94$, 127.16, 127.71, 128.81, 129.13, 139.09, 146.78; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NNaO}_{2}$ $(\mathrm{M}+\mathrm{Na})^{+}$266.1151, found 266.1171. $[\alpha]_{\mathrm{D}}^{20}=+4.0^{\circ} \quad(\mathrm{c}=1$, EtOH $)$; Reference Data: ${ }^{[3]}$ $[\alpha]_{\mathrm{D}}=+4.0^{\circ}(\mathrm{c}=1, \mathrm{EtOH})$, so the absolute structure of the product was determined as $(2 S, 3 S)$.

References:

1 M. P. Doyle, M. A. McKervey, T. Ye, In Modern Catalytic Methods for Organic Synthesis with Diazo Compounds, John Wiley \& Sins, New York, 1998, pp. 1-46.

2 (a) M. Shiino, Y. Watanabe, and K. Umezawa, Bioorg. Med. Chem., 2001, 9, 1233-1240; (b) W. Hu, X. Xu, J. Zhou, W. Liu, H. Huang, J. Hu, L. Yang and L. Gong, J. Am. Chem. Soc., 2008, 130, 7782.

3 J. Yoshimura, Y. Ohgo and T. Sato, J. Am. Chem. Soc., 1964, 86, 3858.

X-ray analysis date of $\mathbf{4 f}$

Bond precision: Cell:	C-C $=0.0061 \mathrm{~A} \quad$ Wavelength $=0.71073$	
	$\mathrm{a}=5.8858(3) \quad \mathrm{b}=$	b=9.0384(4) $\quad \mathrm{c}=23.4473(11)$
	alpha=91.943(2) be	beta=92.404(1) gamma=99.656(2)
Temperature:	296 K	
	Calculated	Reported
Volume	1227.54(10)	1227.54(10)
Space group	P-1	P-1
Hall group	-P 1	?
Moiety formula	C25 H23 Br2 N O4	4 ?
Sum formula	C25 H23 Br2 N O4	$4 \quad \mathrm{C} 25 \mathrm{H} 23 \mathrm{Br} 2 \mathrm{~N}$ O4
Mr	561.24	561.26
Dx,g cm-3	1.518	1.518
Z	2	2
Mu (mm-1)	3.332	3.332
F000	564.0	564.0
F000'	563.10	
h,k,lmax	7,10,27	7,10,27
Nref	4309	4285
Tmin,Tmax	0.193,0.247	0.276,0.335
Tmin'	0.162	

Correction method= MULTI-SCAN
Data completeness= 0.994
R(reflections) $=0.0510$ (3137)
Theta(max) $=25.010$
$\mathrm{S}=1.032$
wR2(reflections) $=0.1452$ (4285)
Npar= 289

D:IWHHLHZ5XXFXXXF9142C.als

D: \WHHUHZ6【XXFUXXF09174C.als

$\underset{\underset{\sim}{*}}{\underset{\sim}{*}}$

D: 1 WHH

D:IWHHUZZIXXFXXXF09176C.als

D: $/$ WHHHHZ6XXFXXXF11029C.als

D:IWHHHZ6IXXFIXXF10210C.als

D: IWHHHZ6XXXXXF10301C:als

$5 a$

ฐ

 Ref 4161
言

E

E

Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers This journal is © The Partner Organisations 2014

