Supporting Information for

Asymmetric Hydrogenation of α -Arylacrylic and β -Arylbut-3-enoic

Acids Catalyzed by a Rh(I) complex of Monodentate Secondary

Phosphine Oxide Ligand

Kaiwu Dong, Yang Li, Zheng Wang and Kuiling Ding* State Key Laboratory of Oganometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.

Contents

Supporting Information for	1
1 General methods	2
2 Ligand synthesis	2
3 Synthesis of α-arylacrylic and β-arylbut-3-enoic acids	3
4 The effect of the base additives on asymmetric hydrogenation of 1a	3
5 Characterization data of the hydrogenation products	5
6 Reference	.14
7 HPLC of the hydrogenation products and derivatives	.16

1 General methods

All reactions and manipulations involving air-sensitive compounds were performed using standard Schlenk techniques or in a glovebox. Anhydrous THF, Et₂O and toluene were distilled from sodium benzophenoneketyl. Anhydrous CH₂Cl₂, CHCl₃, ClCH₂CH₂Cl, Et₃N, MeOH, CF₃CH₂OH and *i*-PrOH were distilled from CaH₂ under an atmosphere of argon. Melting points were measured on a RY-I apparatus and uncorrected. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on a Varian Mercury 400 MHz or Agilent 400 MHz spectrometer. Chemical shifts (δ values) were reported in ppm with internal TMS (¹H NMR), CDCl₃ (¹³C NMR), and external CF₃CO₂H (¹⁹F NMR) references, respectively. Optical rotations were determined using an Autopol I polarimeter. ESI-MS mass spectra were obtained on Agilent Technologies 6224 TOF LC/MS or an APEX III 7.0 TESLA FTMS spectrometer. The IR spectra were measured on a Bruker Tensor 27 spectrometer. Chiral HPLC analyses were performed on a JASCO 2089 liquid chromatography.

2 Ligand synthesis

The chiral monodentate secondary phosphine oxide ligands (S,S)-L1,¹ (R,R)-L2,² (S)-L3,³ (R)-L4,¹ (R,R)-L5,¹ and (S,S)-L6¹ were synthesized according to the literature procedures.

3 Synthesis of α-arylacrylic and β-arylbut-3-enoic acids

Except for α -arylacrylic acid **1n** and β -arylbut-3-enoic acid **3g**, all other substrates **1a-m**⁴ and **3a-f**⁵ are known compounds and were synthesized according to published procedures or obtained from commercial sources.

2-(3-(thiophene-2-carbonyl)phenyl)acrylic acid, 1n

Yellowlish solid; M.P. 91-92 °C;¹H NMR (400 MHz, CDCl₃): $\delta = 10.72$ (s, br, 1H), 7.95 (s, 1H), 7.84 (d, J = 7.6 Hz, 1H), 7.72-7.66 (m, 3H),7.52-7.49 (m, 1H) 7.15-7.13 (m, 1H), 6.63 (s, 1H), 6.11 (s, 1H);¹³C NMR (100 MHz, CDCl₃): $\delta = 187.8$, 171.3, 143.2, 139.6, 137.8, 136.2, 135.1, 134.5, 132.2, 130.4, 129.3, 128.9, 128.2, 128.0; FTIR (KBr pellet) v 3445, 1678, 1631, 1515, 1411, 1230, 917, 708, 656cm⁻¹; ESI-MS m/z: 257.0 (M - H⁺); HRMS (MALDI/DHB) m/z: Calcd. For C₁₄H₁₁O₃S⁺: 259.0423, Found: 259.0420 (M + H⁺).

3-(6-methoxynaphthalen-2-yl)but-3-enoic acid, 3g

Yellowlish solid; M.P. 162-164 °C; ¹H NMR (400 MHz, CD₃OD): $\delta = 7.80$ (s, 1H), 7.72-7.69 (m, 2H), 7.62-7.60 (m, 1H), 7.18 (d, J = 2.0 Hz, 1H), 7.10 (dd, J = 8.8, 1.8 Hz, 1H), 5.66 (s, 1H), 5.27 (s, 1H), 3.88 (s, 3H), 3.61 (s, 2H); ¹³C NMR (100 MHz, CD₃OD): $\delta = 175.4$, 159.3, 142.5, 136.1, 135.6, 130.7, 130.1, 127.9, 125.4, 125.3, 119.9, 116.0, 106.5, 55.7, 41.8; FTIR (neat) v 2963, 1688, 1623, 1598, 1388, 1209, 1180, 1023, 851, 814; ESI-MS m/z: 243.1 (M + H⁺); HRMS (ESI) m/z: Calcd. For C₁₅H₁₅O₃⁺: 243.1016, Found: 243.1012 (M + H⁺).

4 The effect of the base additives on asymmetric hydrogenation of 1a

Table S1 Base effect on [Rh(cod)Cl]₂/(S,S)-L1 catalyzed AH of 1a in toluene^a

Мео	$\begin{array}{c} \hline \\ \text{COOH} \end{array} \begin{array}{c} [\text{Rh}(\text{cod})\text{CI}]_2 (1) \\ (S,S)-\text{L1} (2) \\ \hline \\ \text{H}_2 (30 \text{ atm}) \end{array}$	mol% Rh) mol%) , base MeO	СООН
1a	toluene, rt	, 16 h	(<i>R</i>)- 2a
Entry	Base (0.5 eq)	Conv. (%) ^b	Ee (%) ^c
1	Et ₃ N	>99	92
2	HNEt ₂	65	69
3	DIPEA	>99	78
4	Dimethylaniline	<5%	
5	Pyridine	<5%	

^a Reaction conditions: [1a] = 0.10 M, toluene 2.5 mL. ^b Determined by ¹H NMR. ^c Determined by Chiral HPLC using a chiralcel AD-H column after the acid was transformed to its corresponding methyl ester with CH₂N₂, and the absolute configuration was assigned by comparison of the $[\alpha]_D^{20}$ with that reported in the literature.⁶

Table S2 Base effect on $[Rh(cod)Cl]_2/(S,S)$ -L1 catalyzed AH of 1a in 1,4-dioxane^a

MeO	COOH 1a [Rh(cod)Cl] (S,S)-L1 (H ₂ (30 atr dioxane,	2 (1 mol%) (2 mol%) n), base rt, 16 h	соон (<i>R</i>)-2а
Entry	Base (0.5 eq)	Conv. (%) ^b	Ee (%) ^c
1	Et ₃ N	>99	92
2	HNEt ₂	>99	67
3	DIPEA	>99	80
4	Dimethylaniline	75	0
5	Pyridine	<5%	
6	Bu ₃ N	>99	90
7	Ph ₃ N	50	13
8	K_2CO_3	>99	54
9		20	5
10	Et ₃ N (0.2 eq)	>99	91
11	Et ₃ N (1.0 eq)	>99	90

^a Reaction conditions: Rh(I)/(S,S)-L1 = 1/2, [1a] = 0.10 M. ^b Determined by ¹H NMR. ^c

Determined by Chiral HPLC using a chiralcel AD-H column after the acid was transformed to its corresponding methyl ester with CH_2N_2 , and the absolute configuration was assigned by comparison of the $[\alpha]_D^{20}$ with that reported in the literature.⁶

5 Characterization data of the hydrogenation products

5.1 Characterization data of the hydrogenation products 2a-o

(S)-2-(6-methoxynaphthalen-2-yl)propanoic acid, (S)-2a

>99% conv., 96% yield (1.0-mmol scale), white solid, M.P. 156-158 °C, 95% ee; $[\alpha]_D^{20} = +68.3$ (*c* 1.0, CHCl₃) [lit⁶ $[\alpha]_D^{20} = +65.0$ (*c* 1.0, CHCl₃) for optically pure *S*-isomer]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.70$ (s, 1H), 7.67 (s, 2H), 7.40 (dd, J =8.4, 1.6 Hz, 1H), 7.12 (dd, J = 8.8, 2.4 Hz, 1H), 7.09 (d, J = 2.0 Hz, 1H), 3.90 (s, 3H), 3.86 (q, J = 6.8 Hz, 1H), 1.57 (d, J = 7.2 Hz, 3H).

The enantiomeric excess of **2a** was determined by chiral HPLC analysis on Chiralpak OJ column after esterification with CH₂N₂. Conditions: hexane/isopropanol = 98:2, flow rate = 1.0 mL/min, uv-vis detection at λ = 230 nm, $t_{\rm R}$ = 15.8 min (major), 18.0 min (minor).

(S)-2-phenylpropanoic acid, (S)-2b

>99% conv., yellowish solid, M.P. 54-56 °C, 96% ee; $[\alpha]_D^{20} = +86.2$ (*c* 1.0, CHCl₃) [lit⁷ $[\alpha]_D^{20} = +71.5$ (*c* 2.0, CHCl₃) for optically pure *S*-isomer]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.33-7.23$ (m, 5H), 3.73 (q, *J* = 7.2 Hz, 1H), 1.50 (d, *J* = 7.2 Hz, 3H). The enantiomeric excess of **2b** was determined by chiral HPLC analysis on Chiralpak OJ column after esterification with CH₂N₂. Conditions: hexane/isopropanol = 99 :1, flow rate = 1.0 mL/min, uv-vis detection at $\lambda = 214$ nm, $t_R = 14.1$ min (major), 18.3 min (minor).

(R)-2-(2-chlorophenyl)propanoic acid, (R)-2c

>99% conv., yellowish oil, 92% ee; $[\alpha]_D^{20} = -52.4$ (*c* 1.00, CHCl₃) [lit⁸ $[\alpha]_D^{20} = +32.8$ (*c* 1.31, CHCl₃) for 55% ee *S*-isomer]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.38-7.33$ (m, 2H), 7.26-7.18 (m, 2H), 4.26 (q, *J* = 7.2 Hz, 1H), 1.52 (d, *J* = 7.2 Hz, 3H).

The enantiomeric excess of **3c** was determined by chiral HPLC analysis on Chiralpak OJ column after esterification with CH₂N₂. Conditions: hexane/isopropanol = 99 :1, flow rate = 1.0 mL/min, uv-vis detection at $\lambda = 214$ nm, $t_R = 9.7$ min (major), 12.8 min (minor).

(S)-2-(3-chlorophenyl)propanoic acid, (S)-2d

>99% conv., yellowish oil, 94% ee; $[\alpha]_D^{20} = +27.7$ (*c* 1.0, CHCl₃) [lit⁸ $[\alpha]_D^{20} = +53.9$ (*c* 1.2, CHCl₃) for 97% ee, *S*-isomer]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.31$ (s, 1H), 7.26-7.23 (m, 2H), 7.20-7.18 (m, 1H), 3.71 (q, *J* = 7.2 Hz, 1H), 1.50 (d, *J* = 7.2 Hz, 3H).

The enantiomeric excess of **2d** was determined by chiral HPLC analysis on Chiralpak OJ column after esterification with CH₂N₂. Conditions: hexane/isopropanol = 99 :1, flow rate = 1.0 mL/min, uv-vis detection at λ = 214 nm, $t_{\rm R}$ = 9.0 min (major), 9.9 min (minor).

(S)-2-(4-chlorophenyl)propanoic acid, (S)-2e

>99% conv., white solid, M.P. 68-70 °C, 94% ee; $[\alpha]_D^{20} = +72.8$ (*c* 1.0, CHCl₃) [lit⁸ $[\alpha]_D^{20} = +66.3$ (*c* 0.9, CHCl₃) for 98% ee, *S*-isomer]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.30-7.27$ (m, 2H), 7.26-7.23 (m, 2H),3.70 (q, J = 7.2 Hz, 1H), 1.49 (d, J = 7.2 Hz,

3H).

The enantiomeric excess of **2e** was determined by chiral HPLC analysis on Chiralpak OJ column after esterification with CH₂N₂. Conditions: hexane/isopropanol = 99 :1, flow rate = 1.0 mL/min, uv-vis detection at λ = 214 nm, $t_{\rm R}$ = 9.0 min (minor), 10.2 min (major).

(R)-2-(p-tolyl)propanoic acid, (R)-2f

>99% conv., colorless oil, 93% ee; $[\alpha]_D^{20} = -40.7$ (*c* 1.2, CHCl₃) [lit⁸ $[\alpha]_D^{20} = +66.4$ (*c* 0.71, CHCl₃) for 100% ee, *S*-isomer]; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.98$ (s, br, 1H), 7.15 (d, *J* = 8.4 Hz, 2H), 7.07 (d, *J* = 8.0 Hz, 2H), 3.59 (q, *J* = 6.8 Hz, 1H), 2.29 (s, 3H), 1.39 (d, *J* = 7.2 Hz, 3H).

The enantiomeric excess of **2f** was determined by chiral HPLC analysis on Chiralpak OJ column after esterification with CH₂N₂. Conditions: hexane/isopropanol = 99 :1, flow rate = 1.0 mL/min, uv-vis detection at λ = 214 nm, $t_{\rm R}$ = 15.0 min (major), 18.0 min (minor).

Note: (*S*)-**2f** was obtained in 93% ee using $[Rh(cod)Cl]_2/(R,R)$ -L2 as the catalyst, see the data of entry 6 for Table 2 in the text.

(R)-2-(4-methoxyphenyl)propanoic acid, (R)-2g

>99% conv., white solid, M.P. 72-74 °C, 94% ee; $[\alpha]_D^{20} = -49.8$ (*c* 1.00, CHCl₃) [lit⁹ $[\alpha]_D^{20} = -76.3$ (*c* 1.02, CHCl₃) for 95% ee, *R*-isomer]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.82$ (s, br, 1H), 7.17 (d, *J* = 8.8 Hz, 2H), 6.80 (d, *J* = 8.4 Hz, 2H), 3.75 (s, 3H), 3.58 (q, *J* = 5.6 Hz, 1H), 1.39 (d, *J* = 6.8 Hz, 3H).

The enantiomeric excess of **2g** was determined by chiral HPLC analysis on Chiralpak OJ column after esterification with CH₂N₂. Conditions: hexane/isopropanol = 99 :1, flow rate = 1.0 mL/min, uv-vis detection at λ = 214 nm, $t_{\rm R}$ = 30.3 min (minor), 32.6

min (major).

Note: (*S*)-2g was obtained in 94% ee using $[Rh(cod)Cl]_2/(R,R)$ -L2 as the catalyst, see the data of entry 7 for Table 2 in the text.

(R)-2-(4-fluorophenyl)propanoic acid, (R)-2h

>99% conv., yellowish oil, 94% ee; $[\alpha]_D^{20} = -49.5$ (*c* 1.2, CHCl₃) [lit⁸ $[\alpha]_D^{20} = +53.5$ (*c* 0.62, CHCl₃) for 98% ee, *S*-isomer]; ¹H NMR (300 MHz, CDCl₃): $\delta = 8.27$ (s, br, 1H), 7.22-7.17 (m, 2H), 6.97-6.91 (m, 2H), 3.60 (q, *J* = 7.2 Hz, 1H), 1.38 (d, *J* = 7.2 Hz, 3H); ¹⁹F NMR (282 MHz, CDCl₃): $\delta = -115.9$ ppm.

The enantiomeric excess of **2h** was determined by chiral HPLC analysis on Chiralpak OJ column after esterification with CH₂N₂. Conditions: hexane/isopropanol = 99 :1, flow rate = 1.0 mL/min, uv-vis detection at $\lambda = 214$ nm, $t_R = 9.7$ min (major), 10.5 min (minor).

Note: (*S*)-**2h** was obtained in 94% ee using $[Rh(cod)Cl]_2/(R,R)$ -L2 as the catalyst, see the data of entry 8 for Table 2 in the text.

(R)-2-(4-(trifluoromethyl)phenyl)propanoic acid, (R)-2i

>99% conv., yellowish solid, M.P. 74-76 °C, 90% ee; $[\alpha]_D{}^{20} = -58.5$ (*c* 1.0, CHCl₃) [lit⁹ $[\alpha]_D{}^{20} = -52.6$ (*c* 1.05, CHCl₃) for 95% ee, *R*-isomer]; ¹H NMR (300 MHz, CDCl₃): $\delta = 7.50$ (d, J = 7.5 Hz, 2H), 7.31 (d, J = 7.8 Hz, 2H), 3.63 (q, J = 6.0 Hz, 1H), 1.37 (d, J = 6.3 Hz, 3H); ¹⁹F NMR (282 MHz, CDCl₃): $\delta = -63.0$ ppm.

The enantiomeric excess of **2i** was determined by chiral HPLC analysis on Chiralpak OJ column after esterification with CH₂N₂. Conditions: hexane/isopropanol = 99 :1, flow rate = 1.0 mL/min, uv-vis detection at λ = 214 nm, $t_{\rm R}$ = 6.2 min (major), 8.6 min (minor).

(R)-2-(naphthalen-1-yl)propanoic acid, (R)-2j

>99% conv., white solid, M.P. 155-158 °C, 92% ee; $[\alpha]_D^{20} = -102.0$ (*c* 1.17, CHCl₃) [lit¹⁰ $[\alpha]_D^{20} = +125.7$ (*c* 0.35, CHCl₃) for 87% ee, *S*-isomer]; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.07$ (d, J = 8.0 Hz, 1H), 7.86 (d, J = 7.6 Hz, 1H), 7.77 (d, J = 8.0 Hz, 1H), 7.54-7.42 (m, 4H), 4.52 (q, J = 7.2 Hz, 1H), 1.65 (d, J = 6.8 Hz, 3H).

The enantiomeric excess of **2j** was determined by chiral HPLC analysis on Chiralpak OJ column after esterification with CH₂N₂. Conditions: hexane/isopropanol = 99 :1, flow rate = 1.0 mL/min, uv-vis detection at λ = 230 nm, $t_{\rm R}$ = 18.5 min (minor), 21.0 min (major).

(R)-2-(2-fluoro-[1,1'-biphenyl]-4-yl)propanoic acid, (R)-2k

>99% conv., white solid, M.P. 111-113 °C, 90% ee; $[\alpha]_D^{20} = -29.5$ (*c* 1.10, CHCl₃) [lit⁶ $[\alpha]_D^{20} = -41.2$ (*c* 1.0, CHCl₃) for 97% ee, *R*-isomer]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.54-7.51$ (m, 2H), 7.45-7.34 (m, 4H), 7.18-7.13 (m, 2H), 3.78 (q, J = 7.2 Hz, 1H), 1.55 (d, J = 7.2 Hz, 3H).

The enantiomeric excess of **2k** was determined by chiral HPLC analysis on Chiralpak OJ column after esterification with CH₂N₂. Conditions: hexane/isopropanol = 99 :1, flow rate = 1.0 mL/min, uv-vis detection at λ = 230 nm, $t_{\rm R}$ = 22.4 min (major), 26.5 min (minor).

(R)-2-(4-isobutylphenyl)propanoic acid, (R)-2l

>99% conv., white solid, M.P. 74-75 °C, 93% ee; $[\alpha]_D{}^{20} = -54.9$ (*c* 1.13, CHCl₃) [lit¹¹ $[\alpha]_D{}^{20} = -45.4$ (*c* 1.00, CHCl₃) for 82% ee, *R*-isomer]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.21$ (d, *J* = 8.0 Hz, 2H), 7.09 (d, *J* = 8.0 Hz, 2H), 3.70 (q, *J* = 7.2 Hz, 1H), 2.44 (d,

J = 7.2 Hz, 2H), 1.89-1.78 (heptet, *J* = 6.8 Hz, 1H), 1.49 (d, *J* = 7.2 Hz, 3H), 0.89 (d, *J* = 6.8 Hz, 6H).

The enantiomeric excess of **21** was determined by chiral HPLC analysis on Chiralpak OJ column after esterification with CH₂N₂. Conditions: hexane/isopropanol = 99 : 1, flow rate = 1.0 mL/min, uv-vis detection at λ = 214 nm, $t_{\rm R}$ = 7.8 min (minor), 9.8 min (major).

Note: (*S*)-21 was obtained in 93% ee using $[Rh(cod)Cl]_2/(R,R)$ -L2 as the catalyst, see the data of entry 12 for Table 2 in the text.

(R)-2-(3-benzoylphenyl)propanoic acid, (R)-2m

>99% conv., white solid, M.P. 99-101 °C, 90% ee; $[\alpha]_D^{20} = -35.8$ (*c* 1.16, CHCl₃) [lit¹² $[\alpha]_D^{20} = +45.7$ (*c* 1.03, CHCl₃) for 92% ee, *S*-isomer]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.80-7.78$ (m, 3H), 7.70-7.67 (m, 1H), 7.60-7.55 (m, 2H), 7.49-7.26 (m, 3H), 3.82 (q, *J* = 7.2 Hz, 1H), 1.55 (d, *J* = 7.2 Hz, 3H).

The enantiomeric excess of **2m** was determined by chiral HPLC analysis on Chiralpak IC-3 column after esterification with CH₂N₂. Conditions: hexane/isopropanol = 90 :10, flow rate = 1.0 mL/min, uv-vis detection at λ = 230 nm, $t_{\rm R}$ = 17.0 min (minor), 19.3 min (major).

(R)-2-(3-(thiophene-2-carbonyl)phenyl)propanoic acid, (-)-2n¹³

>99% conv., yellowish solid, M.P. 126-129 °C, 83% ee; $[\alpha]_D^{20} = -30.3$ (*c* 1.40, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.83-7.82$ (m, 1H), 7.78-7.75 (m, 1H), 7.73-7.71 (m, 1H), 7.63-7.62 (m, 1H), 7.57-7.54 (m, 1H), 7.48-7.44 (m, 1H), 7.16-7.13 (m, 1H), 3.83 (q, J = 7.2 Hz, 1H), 1.56 (d, J = 7.2 Hz, 3H).

The enantiomeric excess of **2n** was determined by chiral HPLC analysis on Chiralpak IC-3 column after esterification with CH_2N_2 . Conditions: hexane/isopropanol = 90 :10,

flow rate = 1.0 mL/min, uv-vis detection at λ = 230 nm, $t_{\rm R}$ = 29.4 min (minor), 36.6 min.

(R)-2-methyl-3-phenylpropanoic acid, (R)-20

>99% conv., colorless oil, 54% ee; $[\alpha]_D{}^{20} = -9.4$ (*c* 1.10, CHCl₃) [lit⁶ $[\alpha]_D{}^{25} = -27.0$ (*c* 1.00, CHCl₃) for 98% ee, *R*-isomer]; ¹H NMR (400 MHz, CDCl₃): $\delta = 9.47$ (s, br, 1H), 7.26-7.14 (m, 5H), 3.06 (dd, J = 13.2, 6.0 Hz, 1H), 2.73-2.67 (m, 1H), 2.60 (dd, J = 13.2, 8.4 Hz, 1H), 1.11 (d, J = 6.8 Hz, 3H).

The enantiomeric excess of **20** was determined by chiral HPLC analysis on Chiralpak OJ column after esterification with CH₂N₂. Conditions: hexane/isopropanol = 99 : 1, flow rate = 1.0 mL/min, uv-vis detection at λ = 215 nm, $t_{\rm R}$ = 9.5 min (major), 11.0 min (minor).

5.2 Characterization data of the hydrogenation products 4a-g

(S)-3-phenylbutanoic acid, (S)-4a

>99% conv., colorless oil, 94% ee; $[\alpha]_D{}^{20} = +38.3$ (*c* 1.00, CHCl₃) [lit¹⁴ $[\alpha]_D{}^{23} =$ +10.35 (*c* 1.2,CHCl₃), *S*-isomer]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.32-7.27$ (m, 2H), 7.24-7.18 (m, 3H), 3.31-3.22 (m, 1H), 2.67 (dd, *J* = 15.6, 6.8 Hz, 1H), 2.57 (dd, *J* = 15.6, 8.4 Hz, 1H), 1.31 (d, *J* = 7.2 Hz, 3H).

The enantiomeric excess of **4a** was determined by chiral HPLC analysis on Chiralpak OJ column after esterification with CH₂N₂. Conditions: hexane/isopropanol = 99 :1, flow rate = 1.0 mL/min, uv-vis detection at λ = 214 nm, $t_{\rm R}$ = 11.8 min (minor), 13.8 min (major).

3-(*o***-tolyl)butanoic acid, 4b⁵**

>99% conv., yellowish oil, 16% ee; $[\alpha]_D^{20} = +8.8$ (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.18-7.07$ (m, 4H), 3.57-3.48 (m, 1H), 2.67 (dd, J = 15.6, 6.4 Hz, 1H), 2.55 (dd, J = 15.6, 8.4 Hz, 1H), 2.36 (s, 3H), 1.27 (d, J = 6.8 Hz, 3H).

The enantiomeric excess of **4b** was determined by chiral HPLC analysis on Chiralpak OJ column after esterification with CH₂N₂. Conditions: hexane/isopropanol = 99 :1, flow rate = 0.5 mL/min, uv-vis detection at λ = 214 nm, $t_{\rm R}$ = 16.5 min (major), 17.8 min (minor).

3-(*m***-tolyl)**butanoic acid, $4c^5$

>99% conv., yellowish oil, 95% ee; $[\alpha]_D^{20} = +48.9$ (*c* 1.10, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.20-7.16$ (m, 1H), 7.02-7.00 (m, 3H), 3.27-3.18 (m, 1H), 2.66 (dd, J = 15.2, 6.4 Hz, 1H), 2.55 (dd, J = 15.6, 8.4 Hz, 1H), 2.33 (s, 3H), 1.30 (d, J = 7.2 Hz, 3H).

The enantiomeric excess of **4c** was determined by chiral HPLC analysis on Chiralpak OJ column after esterification with CH₂N₂. Conditions: hexane/isopropanol = 99 :1, flow rate = 0.5 mL/min, uv-vis detection at λ = 214 nm, $t_{\rm R}$ = 19.1 min (minor), 22.0 min (major).

(S)-3-(p-tolyl)butanoic acid, (S)-4d

>99% conv., yellowish solid, M.P. 93-94 °C, 94% ee; $[\alpha]_D^{20} = +49.8$ (*c* 1.00, CHCl₃) [lit¹⁵ $[\alpha]_D^{20} = +34.2$ (*c*1.00, CHCl₃) for 99% ee, *S*-isomer]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.11$ (s, 4H), 3.28-3.19 (m, 1H), 2.66 (dd, J = 15.2, 6.8 Hz, 1H), 2.55 (dd, J = 15.6, 8.4 Hz, 1H), 2.31 (s, 3H),1.29 (d, J = 7.2 Hz, 3H). The enantiomeric excess of **4d** was determined by chiral HPLC analysis on Chiralpak OJ column after esterification with CH₂N₂. Conditions: hexane/isopropanol = 99 :1, flow rate = 0.5 mL/min, uv-vis detection at λ = 214 nm, $t_{\rm R}$ = 21.6 min (minor), 22.8 min (major).

3-(4-fluorophenyl)butanoic acid, 4e⁵

>99% conv., yellowish oil, 94% ee; $[\alpha]_D^{20} = +41.3$ (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.19-7.15$ (m, 2H), 7.00-6.95 (m, 2H), 3.30-3.21 (m, 1H), 2.62 (dd, J = 15.6, 7.2 Hz, 1H), 2.56 (dd, J = 15.6, 8.0 Hz, 1H), 1.29 (d, J = 6.8 Hz, 3H).

The enantiomeric excess of **4e** was determined by chiral HPLC analysis on Chiralpak OD-Hcolumn after esterification with CH₂N₂. Conditions: hexane/isopropanol = 99.5 :0.5, flow rate = 0.5 mL/min, uv-vis detection at λ = 214 nm, $t_{\rm R}$ = 13.7 min (minor), 14.4min (major).

(S)-3-(naphthalen-1-yl)butanoic acid, (S)-4f

>99% conv., yellowish solid, M.P. 108-109 °C, 59% ee; $[\alpha]_D^{20} = +10.9$ (*c* 1.20, CHCl₃) [lit⁵ $[\alpha]_D^{20} = -9.5$ (*c*0.6, CHCl₃) for 98% ee, *R*-isomer]; ¹H NMR (400 MHz, CDCl₃): δ = 8.15 (d, *J* = 8.0 Hz, 1H), 7.86-7.84 (m, 1H), 7.72 (d, *J* = 8.0 Hz, 1H), 7.55-7.36 (m, 4H), 4.20-4.10 (m, 1H), 2.89 (dd, *J* = 15.2, 5.2 Hz, 1H), 2.65 (dd, *J* = 15.6, 9.2 Hz, 1H), 1.46 (d, *J* = 7.2 Hz, 3H).

The enantiomeric excess of **4f** was determined by chiral HPLC analysis on Chiralpak OJ column after esterification with CH₂N₂. Conditions: hexane/isopropanol = 99 : 1, flow rate = 1.0 mL/min, uv-vis detection at λ = 230 nm, $t_{\rm R}$ = 13.7 min (minor), 15.4 min (major).

3-(6-methoxynaphthalen-2-yl)butanoic acid, 4g¹⁶

>99% conv., yellowish solid, M.P. 140-142 °C, 97% ee; $[\alpha]_D^{20} = +47.8$ (*c* 1.10, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.69-7.66$ (m, 2H), 7.57 (d, J = 1.2 Hz, 1H),7.33-7.31 (m, 1H), 7.14-7.09 (m, 2H), 3.90 (s, 3H), 3.44-3.35 (m, 1H), 2.74 (dd, J = 15.2, 7.2 Hz, 1H), 2.63 (dd, J = 15.6, 8.0 Hz, 1H), 1.37 (d, J = 6.8 Hz, 3H). The enantiomeric excess of **4g** was determined by chiral HPLC analysis on Chiralpak IC-3 column after esterification with CH₂N₂. Conditions: hexane/isopropanol = 90 :10,

flow rate = 0.5 mL/min, uv-vis detection at $\lambda = 254$ nm, $t_R = 15.0$ min (minor), 15.8 min (major).

6 Reference

- 1 K. Dong, Z. Wang, K. Ding, J. Am. Chem. Soc., 2012, 134, 12474.
- 2 X.-B. Jiang, A. J. Minnaard, B. Hessen, B. L. Feringa, A. L. L. Duchateau, J. G. O. Andrien, J. A. F. Booger, J. G. de Vries, *Org. Lett.*, 2003, **5**, 1503.
- 3 L. Xin, R. P. Justin, S. Jeffrey, J. Am. Chem. Soc., 2004, 126, 3070.
- 4 (a) S. Ghosh, S. N. Pardo, R. G. Salomon, J. Org. Chem., 1982, 47, 4693; (b) F. X. Felpin, K. Miqueu, J. M. Sotiropoulos, E. Fouquet, O. Ibarguren, J. Laudien, Chem. Eur. J., 2010, 16, 5191; (c) M. Kuchar, B. Brunova, V. Rejholc, M. Jelinkova, J. Holubek, O. Nemecek, Collect. Czech. Chem. Commun., 1984, 49, 122.
- 5 X. Sun, L. Zhou, C.-J. Wang, X. Zhang, Angew. Chem. Int. Ed., 2007, 46, 2623.
- 6 S.-F. Zhu, Y.-B. Yu, S. Li, L.-X. Wang, Q.-L. Zhou, Angew. Chem. Int. Ed., 2012, 51, 8872.
- 7 E. Boyd, E. Coulbeck, G. S. Coumbarides, S. Chavda, M. Dingjan, J. Eames, A. Flinn, M. Motevalli, J. Northend, Y. Yohannes, *Tetrahedron: Asymmetry*, 2007, 18, 2515.
- 8 Z.-L. Wu, Z.-Y. Li, Tetrahedron: Asymmetry, 2001, 12, 3305.
- 9 O. Hiromichi, Jpn. Kokai Tokkyo Koho, 1993, JP 05176778 A 19930720.
- 10 P. C. B. Page, M. J. McKenzie, S. M. Allin, S. S. Klair, *Tetrahedron*, 1997, **53**, 13149.
- 11 O. Piccolo, F. Spreafico, G. Visentin, J. Org. Chem., 1987, 52, 10.
- 12 A. E. Allen, J. Am. Chem. Soc., 2011, 133, 4260.
- 13 A. Moriconi, M. C. Cesta, M. N. Cervellera, A. Aramini, S. Coniglio, S. Colagioia, A. R. Beccari, C. Bizzarri, M. R. Cavicchia, M. Locati, *J. Med. Chem.*, 2007, 50, 3984.
- 14 E. J. Corey, F. J. Hannon, N. W. Boaz, Tetrahedron, 1989, 45, 545.

Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers This journal is The Partner Organisations 2014

15 A. Kamal, *Tetrahedron: Asymmetry*, 2009, **20**, 1267. 16 B. Belleau, *J. Am. Chem. Soc.*, 1951, **73**, 5443.

1

2

7 HPLC of the hydrogenation products and derivatives

(S)-2-(6-methoxynaphthalen-2-yl)propanoic acid, (S)-2a

Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		15.798	277897.594	7476096.000	97.7561	
2		18.045	6180.633	171608.406	2.2439	
Total			284078.227	7647704.406	100.0000	

(S)-2-phenylpropanoic acid, (S)-2b

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		15.098	178239.156	4433476.000	49.8156
2		19.365	136814.391	4466290.500	50.1844
Total			315053.547	8899766.500	100.0000

Chromatogram (dkw-8-34,9-10.org)

Results						
Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		14.143	482855.313	11961605.000	98.3800	
2		18.330	7192.087	196971.813	1.6200	
Total			490047.400	12158576.812	100.0000	

(R)-2-(2-chlorophenyl)propanoic acid, (R)-2c

Total

18

556435.371

9863628.219

100.0000

(S)-2-(3-chlorophenyl)propanoic acid, (S)-2d

	ixesuits							
Peak No.	Peak ID	Ret Time	Height	Area	Conc.			
1		8.970	158948.766	2326839.500	96.7260			
2		9.953	5169.000	78758.898	3.2740			
Total			164117.766	2405598.398	100.0000			

(S)-2-(4-chlorophenyl)propanoic acid, (S)-2e

Total

459406.137

7566505.766

100.0000

(R)-2-(p-tolyl)propanoic acid, (R)-2f

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		15.132	141241.016	3626264.250	50.0355
2		18.598	114250.211	3621114.500	49.9645
Total			255491.227	7247378.750	100.0000

Results						
Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		14.962	52918.617	1302766.875	96.6452	
2		18.082	1626.591	45222.000	3.3548	
Total			54545.208	1347988.875	100.0000	

(R)-2-(4-methoxyphenyl)propanoic acid, (R)-2g

Results						
Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		30.318	1603.556	68892.195	2.9355	
2		32.603	41104.367	2277969.250	97.0645	
Total			42707.923	2346861.445	100.0000	

(R)-2-(4-fluorophenyl)propanoic acid, (R)-2h

Chromatogram (dkw-12-61, 5-13. org) (加) 250 日 200 9.682 -10.473 6 7 Time(min) ġ Ż

Results						
Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		9.732	64169.605	968465.000	97.1963	
2		10.522	1972.196	27936.197	2.8037	
Total			66141.801	996401.197	100.0000	

(R)-2-(4-(trifluoromethyl)phenyl)propanoic acid, (R)-2i

Results						
Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		6.220	116915.781	1166676.875	94.9590	
2		8.573	4574.779	61933.898	5.0410	
Total			121490.561	1228610.773	100.0000	

(R)-2-(naphthalen-1-yl)propanoic acid, (R)-2j

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		19.028	226434.016	9266554.000	49.3300
2		21.657	202461.375	9473686.000	50.4327
Total			431137.193	18784820.338	100.0000

	Results												
Pcak No.	Peak ID	Ret Time	Height	Area	Conc.								
1		18.468	6584.862	218051.203	3.9068								
2		21.072	128515.852	5363323.000	96.0932								
Total			135100.714	5581374.203	100.0000								

(R)-2-(2-fluoro-[1,1'-biphenyl]-4-yl)propanoic acid, (R)-2k

3006089.891

100.0000

(R)-2-(4-isobutylphenyl)propanoic acid, (R)-2l

Total

188396.338

3573967.500

100.0000

-

(R)-2-(3-benzoylphenyl)propanoic acid, (R)-2m

										Re	sult	S											
Peak No.	Peak l	D				Ret '	Гim	e				Не	ight					A	rea				Conc.
1						17.	265					9454	14.69	95			1	1705	063	3.87	5		49.8688
2						19.	765					8263	3.18	38			1	1714	033	3.75	0		50.1312
Total												1771	77.8	883				3419	097	7.62	5		100.0000
						С	hro	mato	gra	m (d	lkw-	13-1	, 6-3	. or	g)								
	280	-	-						-														
	260																						
	240																						
	220																						
	200																						
	180																						
	~ 160																						
	L 140																		~	_			
	出 120																			ŧ.			
	100																		10	2			
	80																						
	60																		- 1				
	40																_						
	20																.960						
	20																-16						
	0				~						~						<u> </u>			<u> </u>			
	0 1	2	3	4	5	6	7	8	9	10	11 Time	12 (min)	13)	14	15	16	17	18	19	20	21	22	
										Re	sult	S											
Peak No.	Peak	ID				Ret '	Tim	е				Не	ight					A	rea				Conc.

			results			
Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		16.960	6362.972	104134.953	4.7657	
2		19.343	104819.734	2080942.875	95.2343	
Total			111182.706	2185077.828	100.0000	

(-)-2-(3-(thiophene-2-carbonyl)phenyl)propanoic acid, (-)-2n

0

			Results			
Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		29.390	5466.836	167210.594	8.1980	
2		36.600	47954.594	1872447.625	91.8020	
Total			53421.430	2039658.219	100.0000	

.COOH Ξ Chromatogram (dkw-8-52, 523. org) 240 220 200 180 160 140 140 120 日 100 8.762 9.447 80 60 40 20 0 10 6 Time(min) 3 8 9 11 Ó 2 4 5 7 Results Peak No. Peak ID **Ret Time** Height Conc. Area 8.762 63746.801 912347.688 49.6116 1 2 9.447 59394.285 926632.063 50.3884 Total 123141.086 1838979.750 100.0000 Chromatogram (dkw-13-10, 6-6.org) 450 400 350 300 (ML) 250 単王200 9.868 200 150 100 11.398 50 0 10 13 Ó 2 3 4 5 6 8 ġ 11 12 Time(min) Results Peak ID Ret Time Height Peak No. Conc. Area 9.868 182216.688 2870312.750 76.8619 1 2 11.398 48520.980 864064.625 23.1381 230737.668 3734377.375 100.0000 Total

(R)-2-methyl-3-phenylpropanoic acid, (R)-20

(S)-3-phenylbutanoic acid, (S)-4a

81843.641

85009.850

1822028.000

1877920.297

97.0237

100.0000

13.845

2

Total

(+)3-(o-tolyl)butanoic acid, (+)-4b

Results											
Peak No.	Peak ID	Ret Time	Height	Area	Conc.						
1		16.498	252722.031	6078966.000	57.9276						
2		17.798	167961.781	4415101.000	42.0724						
Total			420683.813	10494067.000	100.0000						

(+)-3-(m-tolyl)butanoic acid, (+)-4c

Chromatogram (dkw-13-48,7-2.org)

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		18.632	146418.938	3989291.500	49.8286
2		21.498	126560.656	4016732.500	50.1714
Total			272979.594	8006024.000	100.0000

			Results			
Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		19.177	8294.457	216198.906	2.2060	_
2		22.090	300759.063	9584183.000	97.7940	
Total			309053.520	9800381.906	100.0000	

(S)-3-(p-tolyl)butanoic acid, (S)-4d

Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		21.543	76259.813	2393095.750	49.6694	
2		22.728	72478.344	2424951.250	50.3306	
Total			148738.156	4818047.000	100.0000	

	Results												
Peak No.	Peak ID	Ret Time	Height	Area	Conc.								
1		21.628	5009.770	138262.297	2.7379	_							
2		22.775	145418.672	4911665.000	97.2621								
Total			150428.442	5049927.297	100.0000								

(+)-3-(4-fluorophenyl)butanoic acid, (+)-4e

81781.082

1253175.652

100.0000

50

(S)-3-(naphthalen-1-yl)butanoic acid, (S)-4f

	0									
	0	2	4 6	8 Time(10 (min)	12	14	16		
				Result	5					
Peak No.	Peak ID		Ret Time		Height		Area		Conc.	
1			13.715	(68565.516		184508:	5.750	20.1582	
2			15.448	2	29972.922		7307952	2.000	79.8418	
Total				2	298538.438		915303	7.750	100.0000	

36

(+)-3-(6-methoxynaphthalen-2-yl)butanoic acid, (+)-4g

Total