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Experimental Section

Materials. All chemicals were reagent grade unless noted. β-Cyclodextrin was 

recrystallized twice from water and dried in vacuo at 90 °C for 24 h before use. Crude 

N,N-dimethylformamide (DMF) was stirred with CaH2 for 3 days and then distilled 

under reduced pressure prior to use. 2,9-Bis(hydroxymethyl)-1,10-phenanthroline1, 

and mono-(6-deoxyl-6-azido)- β-cyclodextrin2 were prepared according to the 

reported methods. Column chromatography was performed on 200-300 mesh silica 

gel.

Instruments. Elemental analysis was performed on a Perkin-Elmer-2400C instrument. 

NMR spectra were recorded on Bruker AV400 instruments. The fluorescent spectra 

were recorded in a conventional quartz cell (10 × 10 × 45 mm) on a Varin Cary 

Eclipse equipped with a Varian Cary single-cell peltier accessory to control 

temperature at 25 °C. Circular dichroism spectra were collected in a conventional 

quartz cell (10 × 10 × 45 mm) on a MOS-500 spectropolarimeter (Bio-Logic) at 25 °C. 

Fluorescence stopped-flow kinetics was measured using a Bio-Logic SFM-3000 (Bio-

Logic) device equipped with the MOS-500 spectrometer and with a 150 W xenon-

mercury lamp as excitation source at 25 °C. Three shots were performed successively 

for each mixing scenario and an average dynamic curve was obtained. Dynamic data 

were fitted using the Biokine software (Bio-Logic). The excited wavelength and slits 

were set as 272 nm and 8 nm, respectively. FC-08 flowing cell was used, and the 

typical dead time of the stopped flow is approximately 1.0 ms. The confocal 

fluorescent images were captured with a fluorescence-inverted microscope (Olympus 
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FV1000S-I × 81).

Synthesis of 2,9-dipropargyl-1,10-phenanthroline (2). To 20 mL dry DMF was 

added 2,9-bis(hydroxymethyl)-1,10-phenanthroline (481 mg, 2 mmol), and the 

solution was cooled to 0 °C, then NaH (4 mmol, 100 mg) was added into the solution. 

The mixture was stirred at 0 °C for 0.5 h, and then propargyl bromide (80% w/w 

solution in toluene, 500 µL, 4 mmol) was added. The reaction mixture was stirred for 

3 h in an ice bath. Then 20 mg NaH was added to complete the reaction, and the 

mixture was further stirred for another 12 h at room temperature. The reaction mixture 

was dried under reduced pressure to remove the solvent. The residue was dissolved in 

chloroform (100 mL) and washed with water (3 × 50 mL), then the organic phase was 

dried over MgSO4. The solvent was removed under reduced pressure and compound 2 

was obtained by column chromatography (silica gel) using dichloromethane/ethyl 

acetate (5:3 v/v) as the eluent to give pale yellow solid (198.5 mg, 31% yield). 1H 

NMR (400 MHz, CDCl3, ppm): δ = 2.51 (s, 2H, CH≡C-), 4.38 (d, J = 4 Hz, 4H, -CH2-

), 5.16 (s, 4H, -CH2-), 7.79 (s, 2H, H of phenanthroline), 7.89 (d, J = 12 Hz, 2H, H of 

phenanthroline), 8.29 (d, J = 8 Hz, 2H, H of phenanthroline); 13C NMR (100 MHz, 

CDCl3, ppm): δ = 58.5, 73.6, 75.0, 79.5, 121.0, 126.2, 128.1, 136.9, 145.1, 159.0 ppm; 

HR-MS (ESI), C20H16N2O2: [M + Na]+ m/z: calcd 339.1109, found: 339.1108. 

Cell culture and confocal fluorescent imaging. Human cervical carcinoma (HeLa) 

cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented 

with 10% fetal bovine serum (FBS) and gentamicin (80 µg mL-1) in 6-well plates (2 × 

104 cells mL-1, 1 mL per well) for 24h. The cells were incubated with 0.1 mM 
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Zn(ClO4)2 for 0.5 h, and then washed with PBS buffer for three times and further 

incubated with 50 µM 1 or 1/AdCA for 3 h at 37 °C, respectively. The cells were 

washed twice with PBS buffer and then performed confocal fluorescent imaging.
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Scheme S1. Synthetic route of 1.

Figure S1. 1H NMR (400 MHz) spectrum of 1 in D2O at 25 C.



Figure S2. 13C NMR (100 MHz) spectrum of 1 in D2O at 25 C.

Figure S3. MALDI-TOF mass spectrum of 1.
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Figure S4. 1H NMR (400 MHz) spectrum of 2 in CDCl3 at 25 C.
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Figure S5. 13C NMR (100 MHz) spectrum of 2 in CDCl3 at 25 C.
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Figure S6. High-resolution mass spectrum of 2.

Figure S7. Relative fluorescence change (ΔF/F0) of 1 at 377 nm in the presence of 

different metal cations in HEPES buffer (10 mM, pH = 7.2, [1] = 1.5 × 10-5 M, [AdCA] 

= 1.0 × 10-3 M, [Mn+] = 3.0 × 10-5 M, λex = 272 nm).

Figure S8. Job’s plot of 1/AdCA/Zn2+ system in HEPES buffer solution (10 mM, pH = 

7.2) at 25 C ([1] + [Zn2+] = 2.0 × 10-5 M).
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Determination of complex stoichiometry and binding constant of 1/AdCA system:3

In our case, the fluorescence intensity F and other binding parameters obey Hill plot:

log((F ‒ Fmin)/(Fmax ‒ F)) = nlog[M] + B (B = logβ)

where F is the fluorescence intensity of 1 in the presence of a certain concentration of 

AdCA; Fmax is the fluorescence intensity of 1 when the titration reaches equilibrium; 

Fmin is the fluorescence intensity of 1 without addition of AdCA; and n is the binding 

stoichiometry of 1 with AdCA; and β is the binding constant of 1 with AdCA.

Figure S9. Fluorescence intensity changes of 1 upon addition of AdCA in HEPES 

buffer solution (10 mM, pH = 7.2) at 25 ºC ([1] = 1.5 × 10-5 M, λex = 272 nm, and λem = 

368 nm).
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Figure S10. Linear fitting of log((F368 ‒ Fmin)/(Fmax ‒ F368)) versus log[AdCA] ([1] = 

1.5 × 10-5 M, Fmax = 286, and Fmin = 336). From the slope (n = 1.98) and intercept (logβ 

= 6.62), it can be seen that the binding stoichiometry and logKS value between 1 and 

AdCA are 2 and 4.2 × 106 M‒2, respectively.

Figure S11. Fluorescence emission spectra of (a) 1/AdCA complex with 90% 
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encapsulation ratio ([AdCA] = 1 × 10-3 M), (b) 1/AdCA complex with 50% 

encapsulation ratio ([AdCA] = 4 × 10-5 M), (c) free 1, (d) 1/AdCA complex in (a) with 

Zn2+, (e) 1/AdCA complex in (b) with Zn2+ , and (f) 1/Zn2+ complex in HEPES buffer 

solution at 25 °C ([1] = 1.5 × 10-5 M, [Zn2+] = 3 × 10-5 M, λex = 272 nm, and λem = 377 

nm).

Figure S12. ROESY spectrum of 1 in D2O at 25 C. ([1] = 5 × 10-3 M).
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Figure S13. NOESY spectrum of 1/Zn2+ system in D2O at 25 C. [1] = 2.5 × 10-3 M, 

[Zn2+] = 5.0 × 10-3 M). 
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Figure S14. NOESY spectrum of 1/AdCA/Zn2+ system in D2O at 25 C. ([1] = 2.5 × 

10-3 M, [AdCA] = 7.4 × 10-3 M, [Zn2+] = 5.0 × 10-3 M. Under this concentration, more 

than 99% of 1 and AdCA were converted to 1/AdCA complex through a calculation 

based on the binding constant between CD and AdCA).
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Figure S15. Energy minimization structure of 1/AdCA/Zn2+ system obtained by 

molecular modeling study. The geometry of 1/AdCA/Zn2+ complex was optimized by 

the molecular mechanics method with dreiding forcefield.

Figure S16. Dependence of observed rate constant kobs of 1/AdCA ([1] = 1.5 × 10-5 M, 

[AdCA] = 2 × 10-3 M) with different concentrations of Zn2+ in HEPES buffer solution 
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(10 mM, pH = 7.2). Inset: Dynamic experiments of the rapid mixing of 1/AdCA with 

different concentrations of Zn(ClO4)2 (0, 0.75, 1.5, 2.25, 3.0, and 3.75 × 10-4 M). All 

concentrations mentioned above are the final ones after mixing.
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