Electronic Supplementary Information

Triptycene-derived calix[6]arene analogues: synthesis, structure and complexation with paraquat derivatives

Yu-Xiang Xia,^{*a,b*} Tao Xie,^{*a*} Ying Han^{*a*} and Chuan-Feng Chen^{*a*,*}

^aBeijing National Laboratory for Molecular Sciences, CAS Key laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. ^bUniversity of Chinese Academy of Sciences, Beijing 100049, China.

E-mail: cchen@iccas.ac.cn

Contents

1. Copies of ¹ H NMR and ¹³ C NMR spectra of new compounds	S2
2. Variable-temperature ¹ H NMR experiments of 8b , 11a , 11b and 14a	S17
3. X-ray crystal data and packing of 8a, 8b, 9b, 10b, and 14a	S19
4. The comparison of ¹ H NMR spectra between host 11a and the guests	S22
5. Determination of the mole ratio between host 11a and the guests	S24
6. ESI-MS spectra of the complexes	S26
7. ESI-HRMS spectrum of [2]rotaxane 15	S28

1. Copies of ¹H NMR and ¹³C NMR spectra of new compounds

Fig. S8 ¹³C NMR spectrum (75 MHz, CDCl₃) of 8a.

Fig. S10 13 C NMR spectrum (75 MHz, CDCl₃) of 8b.

Fig. S12 ¹³C NMR spectrum (75 MHz, CDCl₃) of 9a.

Fig. S29 ¹H NMR spectrum (300 MHz, DMSO- d_6) of [2]rotaxane 15.

2. Variable-temperature ¹H NMR experiments of 8b, 11a, 11b and 14a

Fig. S31 Partial ¹H NMR spectra of **11a** (DMSO- d_6 , 300MHz) at various temperatures.

3. X-ray crystal data and packing of 8a, 8b, 9b, 10b, and 14a

Crystal Data for **8a**: $C_{74}H_{72}O_{12}$, $M_w = 1153.32$, crystal size $0.32 \times 0.15 \times 0.13$ mm, Orthorhombic, space group *Pccn*, a = 17.548(4), b = 24.274(5), c = 14.468(3) Å, $\alpha = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$, V = 6163(2) Å³, Z = 4, D = 1.243 Mg m⁻³, T = 173(2) K, 36553 reflections measured, 5417 unique ($R_{int} = 0.0863$), final *R* indices [$I > 2\sigma(I)$]: $R_1 = 0.1251$, $wR_2 = 0.3265$, *R* indices (all data): $R_1 = 0.1395$, $wR_2 = 0.3503$. CCDC 931895.

Crystal Data for **8b**·2CHCl₃: C₆₈H₆₂Cl₆O₈, $M_w = 1219.88$, crystal size 0.43 × 0.34 × 0.30 mm, Triclinic, space group *P*-1, a = 11.466(2), b = 11.708(2), c = 13.256(3) Å, $\alpha = 69.828(9)^{\circ}$, $\beta = 73.892(9)^{\circ}$, $\gamma = 72.609(9)^{\circ}$, V = 1563.5(6) Å³, Z = 1, D = 1.296 Mg m⁻³, T = 173(2) K, 16948 reflections measured, 5487 unique ($R_{int} = 0.0395$), final *R* indices [$I > 2\sigma(I$]]: $R_1 = 0.0849$, $wR_2 = 0.2311$, *R* indices (all data): $R_1 = 0.0925$, $wR_2 = 0.2403$. CCDC 931896.

Crystal Data for **9b**: C₆₆H₆₀O₁₀, $M_w = 1013.14$, crystal size $0.32 \times 0.31 \times 0.08$ mm, Triclinic, space group *P*-1, a = 11.429(2), b = 11.955(2), c = 12.714(3) Å, $a = 72.18(3)^\circ$, $\beta = 70.44(3)^\circ$, $\gamma = 70.84(3)^\circ$, V = 1508.3(5) Å³, Z = 1, D = 1.115 Mg m⁻³, T = 173(2) K, 19654 reflections measured, 6896 unique ($R_{int} = 0.0486$), final *R* indices [$I > 2\sigma(I)$]: $R_1 = 0.0974$, $wR_2 = 0.2766$, *R* indices (all data): $R_1 = 0.1111$, $wR_2 = 0.2907$. CCDC 931897.

Crystal Data for **10b**·2CH₂Cl₂: C₆₆H₅₈Br₂Cl₄O₈, $M_w = 1280.74$, crystal size 0.31 × 0.30 × 0.06 mm, Triclinic, space group *P*-1, a = 11.493(2), b = 11.851(2), c = 12.708(3) Å, $\alpha = 71.48(3)^{\circ}$, $\beta = 71.12(3)^{\circ}$, $\gamma = 72.93(3)^{\circ}$, V = 1517.4(5) Å³, Z = 1, D = 1.402 Mg m⁻³, T = 173(2) K, 16886 reflections measured, 5342 unique ($R_{int} = 0.0811$), final *R* indices [$I > 2\sigma(I)$]: $R_1 = 0.0920$, $wR_2 = 0.2566$, *R* indices (all data): $R_1 = 0.1100$, $wR_2 = 0.2809$. CCDC 931898.

Crystal Data for **14a**·5CHCl₃: C₆₇H₅₇Cl₁₅O₈, $M_w = 1521.88$, crystal size 0.63 x 0.59 x 0.09 mm, Monoclinic, space group P2(I)/c, a = 21.999(4), b = 19.134(4), c = 33.115(7) Å, $a = 90^{\circ}$, $\beta = 98.09(3)^{\circ}$, $\gamma = 90^{\circ}$, V = 13800(5) Å³, Z = 8, D = 1.465 Mg m⁻³, T = 173(2) K, 79446 reflections measured, 24153 unique ($R_{int} = 0.0773$), final R indices [$I > 2\sigma(I)$]: $R_1 = 0.1658$, $wR_2 = 0.3414$, R indices (all data): $R_1 = 0.1855$, $wR_2 = 0.3536$. CCDC 931783.

Fig. S34 A 3D microporous structure of 8b viewed along the *c*-axis. Solvent molecules and hydrogen atoms were omitted for clarity.

Fig. S35 Crystal structure of **9b** viewed along the *c*-axis. Solvent molecules and hydrogen atoms were omitted for clarity.

Fig. S36 Top view of crystal structure of 10b, and solvent molecules and hydrogen atoms were omitted for clarity.

Fig. S37 A 2D layer structure of macrocycle 10b with the CH_2Cl_2 molecules situated inside the exterior of the cavity.

Fig. S38 A 3D microporous structure of macrocycle **10b** viewed along the *c*-axis. The CH_2Cl_2 molecules situated in the different channels and hydrogen atoms are omitted for clarity.

4. The comparison of ¹H NMR spectra between host 11a and the guests

Fig. S40 Partial ¹H NMR spectra (300 MHz, Acetone- d_6 , 298 K) of (a) free host **11a**, (b) host **11a** with 1.0 equiv of **G2** and (c) free guest **G2**. [**11a**]₀ = 2.0 mM.

Fig. S41 Partial ¹H NMR spectra (300 MHz, acetone- d_6 , 298 K) of (a) free host **11a**, (b) host **11a** with 1.0 equiv of **G3** and (c) free guest **G3**. [**11a**]₀ = 2.0 mM.

Fig. S42 Partial ¹H NMR spectra (300 MHz, acetone- d_6 , 298 K) of (a) free host 11a, (b) host 11a with 1.0 equiv of G4 and (c) free guest G4. [11a]₀ = 2.0 mM.

5. Determination of the mole ratio between host 11a and the guests

Fig. S43 Mole ratio plot for the complexation of 11a and G1 in acetone- d_6 at 298K.

Fig. S44 Mole ratio plot for the complexation of 11a and G2 in acetone- d_6 at 298K.

Fig. S45 Mole ratio plot for the complexation of 11a and G3 in acetone- d_6 at 298K.

Fig. S46 Mole ratio plot for the complexation of 11a and G4 in acetone- d_6 at 298K.

6. ESI-MS spectra of the complexes

Fig. S48 ESI-MS spectrum of complex 11a·G2.

Fig. S49 ESI-MS spectrum of complex 11a·G3.

Fig. S50 ESI-MS spectrum of complex 11a·G4.

7. ESI-HRMS spectrum of [2]rotaxane 15

Fig. S51 ESI-HRMS spectrum of [2]rotaxane 15.