Highly Selective 4-Alkynoic Acids Synthesis via Iron-

Mediated Complete Inversion of Stereogenic Carbon Centers

Xiaobing Zhang, Youai Qiu, Chunling Fu, and Shengming Ma*

Laboratory of Molecular Recognition and Synthesis, Department of Chemistry,

Zhejiang University, Hangzhou 310027, P. R. China

E-mail: masm@sioc.ac.cn

Supporting Information

Table of Contents

Materials	S2
Fe-Catalyzed S_N^2 coupling reaction of Grignard reagent with	S2-S28
4-alkynocic acid 3	
Desilylation and enantioselective allenylation of 4m	S28-S33
Desilylation and Pd-catalyzed Sonogashira coupling reaction of $(2S,3R)$ -4m	\$33-\$34
¹ H/ ¹³ C NMR spectra of these compounds	S35-S134

Materials. Et₂O and THF were distilled from Na wire/benzophenone, CH₂Cl₂ was distilled over CaH₂, other commercially available chemicals were used without additional purification unless otherwise noted. All ¹H NMR experiments were measured referring to the signal of tetramethylsilane (0 ppm) in CDCl₃ and ¹³C NMR experiments were measured referring to the signal of residual chloroform (77.0 ppm) in CDCl₃.

1. Fe-Catalyzed S_N2 coupling reaction of Grignard reagent with 4-alkynoic acid

- 3
- (1) 2,3-Dimethyl-5-(trimethylsilyl)pent-4-ynoic acid **3a** (zxb-12-20)

Typical Procedure 1: To a mixture of FeCl₃·6H₂O (13.7 mg, 0.05 mmol), **1a** (183.0 mg, 1 mmol), and THF (5 mL) was added dropwise a solution of MeMgCl (1 mL, 3 M in THF, 3 mmol) at -78 °C within 3 min under N₂ atmosphere. After being stirred at -78 ° C for 1 h, the reaction mixture was quenched with EtOH (0.5 mL), and then acidified with 5% HCl (aq) to pH = 1. The resulting mixture was extracted with ether (15 mL \times 3), washed with brine, filtrated, and evaporated. **3a/2a** = 98/2 determined by ¹H NMR analysis of the crude reaction mixture before separation. The residue was purified by flash chromatography on silica gel (eluent: petroleum ether: ethyl acetate = 10 : 1 - 2 : 1 to afford **3a** (167.3 mg, 84%): Solid: m.p. 67.3-68.4 °C

(hexane/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 10.54 (brs, 1 H, COOH), 2.83 (pentet, J = 7.2 Hz, 1 H, CH), 2.42 (pentet, J = 7.2 Hz, 1 H, CH), 1.32 (d, J = 6.9 Hz, 3 H, CH₃), 1.22 (d, J = 6.9 Hz, 3 H, CH₃), 0.14 (s, 9 H, 3 × CH₃Si); ¹³C NMR (CDCl₃, 75 MHz) δ 181.6, 108.0, 86.6, 45.1, 30.0, 19.4, 14.8, 0.1; IR (neat, cm⁻¹) 2977, 2938, 2899, 2169, 1712, 1460, 1427, 1373, 1268, 1245, 1212, 1088; MS (EI) m/z (%) 198 (M⁺, 0.23), 183 ((M-CH₃)⁺, 20.67), 75 (100); Elemental analysis calcd for C₁₀H₁₈O₂Si: C, 60.56, H, 9.15, found: C, 60.40, H, 8.95.

The following compounds was prepared according to this Typical Procedure 1

(2) 3-Methyl-5-(trimethylsilyl)pent-4-ynoic acid **3b** (zxb-11-123)

The reaction of FeCl₃·6H₂O (13.8 mg, 0.05 mmol), **1b** (168.6 mg, 1 mmol), THF (5 mL), MeMgCl (1 mL, 3 M in THF, 3 mmol) afforded **3b** (155.1 mg, 84%) (eluent: petroleum ether: ethyl acetate: dichloromethane = 20 : 1 : 1 - 10 : 1 : 1 - 2 : 1 : 0. Liquid; ¹H NMR (300 MHz, CDCl₃) δ 10.02 (brs, 1 H, COOH), 3.04-2.87 (m, 1 H, CH), 2.61 (dd, *J* = 15.9 and 6.6 Hz, 1 H, one proton of CH₂), 2.43 (dd, *J* = 15.8 and 8.0 Hz, 1 H, one proton of CH₂), 1.23 (d, *J* = 7.2 Hz, 3 H, CH₃), 0.12 (s, 9 H, 3 × CH₃); ¹³C NMR (CDCl₃, 75 MHz) δ 177.8, 109.2, 85.1, 41.3, 23.4, 20.5, 0.04; IR (neat, cm⁻¹) 2962, 2168, 1713, 1412, 1330, 1290, 1250, 1201, 1126, 1063; MS (EI) m/z (%) 184 (M⁺, 1.13), 99 (100); HRMS calcd for C₉H₁₆O₂Si (M⁺): 184.0920, found:

184.0929. **3b**/2**b** = 97/3 determined by ¹H NMR analysis of the crude reaction mixture before separation.

(3) 3-Phenyl-5-(trimethylsilyl)pent-4-ynoic acid 3c (zxb-11-80)

The reaction of FeCl₃'6H₂O (14.0 mg, 0.05 mmol), **1b** (167.8 mg, 1 mmol), THF (5 mL), PhMgCl (1.5 mL, 2 M in THF, 3 mmol) afforded **3c** (195.5 mg, 80%, **3c/2c** = 95/5, only **3c** was observed after recrystallization) (eluent: petroleum ether: ethyl acetate: dichloromethane = 20 : 1 : 1 - 10 : 1 : 1 - 2 : 1 : 0. **3c** : Solid: m.p. 87.0-88.4 ^oC (hexane/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 11.42 (brs, 1 H, COOH), 7.50-7.20 (m, 5 H, ArH), 4.21 (t, *J* = 6.9 Hz, 1 H, CH), 2.90 (dd, *J* = 15.3 and 8.3 Hz, 1 H, one of CH₂), 2.80 (dd, *J* = 15.0 and 6.8 Hz, 1 H, one of CH₂), 0.21 (s, 9 H, 3 × CH₃); the following signals are discernible for **2c**: 5.27 (t, *J* = 6.9 Hz, 1 H, CH=), 3.15 (d, *J* = 6.9 Hz, 2 H, CH₂), 0.24 (s, 9 H, 3 × CH₃Si); ¹³C NMR (CDCl₃, 75 MHz) δ 177.0, 139.8, 128.7, 127.4, 127.3, 106.1, 88.1, 43.2, 34.7, 0.02; IR (neat, cm⁻¹) 3063, 3031, 2960, 2900, 2176, 1713, 1494, 1454, 1411, 1250, 1064; MS (EI) m/z (%) 246 (M⁺, 7.28), 218 (100); Elemental analysis calcd for C₁₄H₁₈O₂Si: C, 68.25, H, 7.36, found: C, 68.09, H, 7.42. **3c/2c** = 94/6 determined by ¹H NMR analysis of the crude reaction mixture before separation.

(4) 2-Methyl-3-phenyl-5-(trimethylsilyl)pent-4-ynoic acid **3d** (zxb-10-112)

The reaction of FeCl₃·6H₂O (6.2 mg, 0.02 mmol), **1a** (74.4 mg, 0.4 mmol), THF (5 mL), PhMgCl (0.6 mL, 2 M in THF, 1.2 mmol) afforded **3d** (93.6 mg, 88%) (eluent: petroleum ether: ethyl acetate: dichloromethane = 20 : 1 : 1 - 10 : 1 : 1 - 2 : 1 : 0): Liquid; ¹H NMR (300 MHz, CDCl₃) δ 10.37 (brs, 1 H, COOH), 7.30-7.09 (m, 5 H, ArH), 4.07 (d, J = 6.9 Hz, 1 H, CH), 2.66 (pentet, J = 6.8 Hz, 1 H, CH), 1.15 (d, J = 6.9 Hz, 3 H, CH₃), 0.07 (s, 9 H, 3 × CH₃); ¹³C NMR (CDCl₃, 75 MHz) δ 180.5, 139.0, 128.5, 127.9, 127.2, 104.4, 89.9, 46.6, 41.4, 13.4, 0.01; IR (neat, cm⁻¹) 3031, 2960, 2174, 1713, 1602, 1495, 1455, 1414, 1341, 1250, 1068, 1030; MS (EI) m/z (%) 260 (M⁺, 2.49), 159 (100); HRMS calcd for C₁₅H₂₀O₂Si (M⁺): 260.1233, found: 260.1230. **3d/2d** = 96/4 determined by ¹H NMR analysis of the crude reaction mixture before separation.

(5) 2-Methyl-3-(4'-methylphenyl)-5-(trimethylsilyl)pent-4-ynoic acid 3e (zxb-11-93)

The reaction of FeCl₃[•]6H₂O (13.5 mg, 0.05 mmol), **1a** (182.1 mg, 1 mmol), THF

(5 mL), 4-methylphenylmagnisum bromide (3 mL, 1 M in THF, 3 mmol) afforded **3e** (213.3 mg, 78%, **3e/2e** = 95/5) (eluent: petroleum ether: ethyl acetate: dichloromethane = 20 : 1 : 1 - 10 : 1 : 1 - 2 : 1 : 0, twice). **3e:** Solid: m.p. 106.2-107.4 °C (hexane/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 10.03 (brs, 1 H, COOH), 7.28-7.20 (m, 2 H, ArH), 7.12 (d, *J* = 7.5 Hz, 2 H, ArH), 4.13 (d, *J* = 7.2 Hz, 1 H, CH), 2.74 (pentet, *J* = 7.0 Hz, 1 H, CH), 2.33 (s, 3 H, CH₃), 1.25 (d, *J* = 6.9 Hz, 3 H, CH₃), 0.17 (s, 9 H, 3 × CH₃); the following signals are discernible for **2e**: 5.35 (d, *J* = 6.3 Hz, 1 H, CH=), 3.22 (pentet, *J* = 7.0 Hz, 1 H, CH), 0.22 (s, 9 H, 3 × CH₃Si); ¹³C NMR (CDCl₃, 75 MHz) δ 180.4, 136.8, 136.0, 129.1, 127.8, 104.6, 89.6, 46.5, 41.0, 21.1, 13.5, 0.01; IR (neat, cm⁻¹) 3024, 2960, 2899, 2174, 1713, 1514, 1457, 1414, 1287, 1250, 1110, 1069; MS (EI) m/z (%) 274 (M⁺, 16.17), 173 (100); Elemental analysis calcd for C₁₆H₂₂O₂Si: C, 70.03, H, 8.08, found: C, 69.87, H, 8.11. **3e/2e** = 95/5 determined by ¹H NMR analysis of the crude reaction mixture before separation.

(6) 2-Methyl-3-(3'-methylphenyl)-5-(trimethylsilyl)pent-4-ynoic acid **3f** (zxb-11-101)

The reaction of FeCl₃·6H₂O (13.6 mg, 0.05 mmol), **1a** (182.0 mg, 1 mmol), THF (5 mL), 3-methylphenylmagnisum bromide (3 mL, 1 M in THF, 3 mmol) afforded **3f** (215.3 mg, 79%, **3f/2f** = 94/6) (eluent: petroleum ether: ethyl acetate:

dichloromethane = 20 : 1 : 1 - 10 : 1 : 1 - 2 : 1 : 0, twice): **3f**: Liquid; ¹H NMR (300 MHz, CDCl₃) δ 10.14 (brs, 1 H, COOH), 7.28-7.16 (m, 3 H, ArH), 7.12-7.00 (m, 1 H, ArH), 4.17 (d, *J* = 6.9 Hz, 1 H, CH, 2.79 (pentet, *J* = 6.8 Hz, 1 H, CH), 2.36 (s, 3 H, CH₃), 1.27 (d, *J* = 6.6 Hz, 3 H, CH₃), 0.20 (s, 9 H, 3 × CH₃); the following signals are discernible for **2f**: 5.38 (d, *J* = 6.3 Hz, 1 H, CH=), 3.25 (pentet, *J* = 6.5 Hz, 1 H, CH), 0.25 (s, 9 H, 3 × CH₃Si); ¹³C NMR (CDCl₃, 75 MHz) δ 180.5, 138.9, 138.0, 128.6, 128.3, 128.0, 125.0, 104.5, 89.8, 46.5, 41.2, 21.4, 13.3, 0.02; IR (neat, cm⁻¹) 3026, 2960, 2174, 1712, 1608, 1459, 1413, 1381, 1330, 1250, 1070, 1037; MS (EI) m/z (%) 274 (M⁺, 12.03), 259 (100); Elemental analysis calcd for C₁₆H₂₂O₂Si: C, 70.03, H, 8.08, found: C, 69.99, H, 8.08. **3f**/2**f** = 93/7 determined by ¹H NMR analysis of the crude reaction mixture before separation.

(7) 3-(4'-Methoxyphenyl)-2-methyl-5-(trimethylsilyl)pent-4-ynoic acid 3g

(zxb-11-95)

The reaction of FeCl₃[•]6H₂O (13.8 mg, 0.05 mmol), **1a** (180.6 mg, 1 mmol), THF (5 mL), 4-methoxymagnisum bromide (6 mL, 0.5 M in THF, 3 mmol) afforded **3g** (209.6 mg, 73%) (eluent: petroleum ether: ethyl acetate = 10 : 1 - 5 : 1 - 2 : 1): Solid: m.p. 82.8-83.5 °C (hexane/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 10.02 (brs, 1 H, COOH), 7.28 (d, *J* = 8.7 Hz, 2 H, ArH), 6.85 (d, *J* = 8.4 Hz, 2 H, ArH), 4.10 (d, *J* =

7.5 Hz, 1 H, CH), 3.79 (s, 3 H, CH₃), 2.73 (pentet, J = 6.8 Hz, 1 H, CH), 1.26 (d, J = 6.6 Hz, 3 H, CH₃), 0.17 (s, 9 H, 3 × CH₃); ¹³C NMR (CDCl₃, 75 MHz) δ 180.4, 158.7, 131.1, 129.0, 113.8, 104.8, 89.5, 55.2, 46.7, 40.6, 13.6, 0.01; IR (neat, cm⁻¹) 3034, 2959, 2901, 2837, 2173, 1712, 1612, 1512, 1462, 1416, 1303, 1250, 1177, 1036; MS (EI) m/z (%) 290 (M⁺, 27.0), 217 (100); Elemental analysis calcd for C₁₆H₂₂O₃Si: C, 66.17, H, 7.64, found: C, 66.53, H, 7.67. **3g/2g** = 95/5 determined by ¹H NMR analysis of the crude reaction mixture before separation.

(8) 2-Methyl-3-thiophen-2-yl-5-(trimethylsilyl)pent-4-ynoic acid **3h** (zxb-11-96)

The reaction of FeCl₃·6H₂O (13.2 mg, 0.05 mmol), **1a** (182.0 mg, 1 mmol), THF (5 mL), 2-thiophenylmagnisum bromide (3 mL, 1 M in THF, 3 mmol) afforded **3h** (237.5 mg, 89%) (eluent: petroleum ether: ethyl acetate = 20 : 1 - 10 : 1 - 2 : 1): Liquid; ¹H NMR (300 MHz, CDCl₃) δ 11.13 (brs, 1 H, COOH), 7.20 (d, *J* = 4.5 Hz, 1 H, ArH), 7.05-6.98 (m, 1 H, ArH), 6.97-6.90 (m, 1 H, ArH), 4.47 (d, *J* = 6.9 Hz, 1 H, CH), 2.85 (pentet, *J* = 6.8 Hz, 1 H, CH), 1.33 (d, *J* = 6.9 Hz, 3 H, CH₃), 0.20 (s, 9 H, 3 × CH₃); ¹³C NMR (CDCl₃, 75 MHz) δ 180.4, 142.4, 126.6, 125.6, 124.6, 103.5, 89.7, 47.0, 36.6, 13.5, -0.12; IR (neat, cm⁻¹) 3073, 2960, 2899, 2175, 1713, 1459, 1415, 1250, 1067, 1032; MS (EI) m/z (%) 266 (M⁺, 10.32), 165 (100); HRMS calcd for

 $C_{13}H_{18}O_2SSi (M^+)$: 266.0797, found: 266.0793. **3h**/**2h** = 97/3 determined by ¹H NMR analysis of the crude reaction mixture before separation.

(9) 2-(2'-Chloroethyl)-3-methyl-5-trimethylsilanyl-pent-4-ynoic acid **3i** (zxb-11-128)

The reaction of FeCl₃⁶H₂O (13.8 mg, 0.05 mmol), **1c** (232.0 mg, 1 mmol), THF (5 mL), MeMgCl (1 mL, 3 M in THF, 3 mmol) afforded **3i** (194.7 mg, 78%) (eluent: petroleum ether: ethyl acetate: dichloromethane = 20 : 1 : 1 - 10 : 1 : 1 - 2 : 1 : 0): Solid: m.p. 61.8-62.9 °C (hexane/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 11.34 (brs, 1 H, COOH), 3.78-3.64 (m, 1 H, one proton of CH₂Cl), 3.64-3.50 (m, 1 H, one proton of CH₂Cl), 2.95-2.80 (m, 1 H, CH), 2.68-2.50 (m, 1 H, CH), 2.40-2.15 (m, 2 H, CH₂), 1.25 (d, *J* = 6.9 Hz, 3 H, CH₃), 0.15 (s, 9 H, 3 × CH₃); ¹³C NMR (CDCl₃, 75 MHz) δ 180.0, 107.1, 87.4, 48.2, 42.6, 32.7, 29.2, 19.4, -0.01; IR (neat, cm⁻¹) 2961, 2.69, 1710, 1435, 1294, 1250, 1210, 1160, 1131; MS (EI) m/z (%) 248 (M (³⁷Cl)⁺, 0.52), 246 (M (³⁵Cl)⁺, 0.24), 93 (100); Elemental analysis calcd for C₁₁H₁₉O₂ClSi: C, 53.53, H, 7.76, found: C, 53.51, H, 7.68. **3i/2i** = 97/3 determined by ¹H NMR analysis of the crude reaction mixture before separation.

(10) 2-Allyl-3-methyl-5-trimethylsilanyl-pent-4-ynoic acid **3j** (zxb-11-45)

The reaction of FeCl₃·6H₂O (7.1 mg, 0.03 mmol), **1d** (105.1 mg, 0.5 mmol), THF (5 mL), MeMgCl (0.5 mL, 3 M in THF, 1.5 mmol) afforded **3j** (98.6 mg, 87%) (eluent: petroleum ether: ethyl acetate: dichloromethane = 20 : 1 : 1 - 10 : 1 : 1 - 2 : 1 : 0): Liquid; ¹H NMR (300 MHz, CDCl₃) δ 10.92 (brs, 1 H, COOH), 5.94-5.74 (m, 1 H, CH=), 5.24-5.05 (m, 2 H, =CH₂), 2.87-2.74 (m, 1 H, CH), 2.74-2.60 (m, 1 H, CH), 2.60-2.40 (m, 2 H, CH₂), 1.22 (d, *J* = 6.9 Hz, 3 H, CH₃), 0.15 (s, 9 H, 3 × CH₃); ¹³C NMR (CDCl₃, 75 MHz) δ 180.4, 134.6, 117.3, 108.0, 86.9, 51.1, 35.1, 29.0, 19.3, 0.06; IR (neat, cm⁻¹) 3081, 2960, 2168, 1712, 1643, 1443, 1413, 1251, 1209; MS (EI) m/z (%) 224 (M⁺, 1.0), 106 (100), 75 (100), 73(100); HRMS calcd for C₁₂H₂₀O₂Si (M⁺): 224.1233, found: 224.1236. **3j/2j** = 99/1 determined by ¹H NMR analysis of the crude reaction mixture before separation.

(11) 2-Propyl-3-methyl-5-triethylsilanyl-pent-4-ynoic acid **3k** (zxb-11-127)

The reaction of FeCl₃[•]6H₂O (13.5 mg, 0.05 mmol), **1e** (253.8 mg, 1 mmol), THF (5 mL), MeMgCl (1 mL, 3 M in THF, 3 mmol) afforded **3k** (208.5 mg, 77%) (eluent: petroleum ether: ethyl acetate: dichloromethane = 20 : 1 : 1 - 10 : 1 : 1 - 2 : 1 : 0):

Liquid; ¹H NMR (300 MHz, CDCl₃) δ 11.54 (brs, 1 H, COOH), 2.82-2.69 (m, 1 H, CH), 2.35 (td, J = 9.8 and 3.4 Hz, 1 H, CH), 1.93-1.78 (m, 1 H, one of CH₂), 1.78-1.64 (m, 1 H, one of CH₂), 1.52-1.15 (m, 5 H, CH₂ + CH₃), 1.07-0.82 (m, 12 H, $4 \times$ CH₃), 0.57 (q, J = 7.9 Hz, 6 H, $3 \times$ CH₂); ¹³C NMR (CDCl₃, 75 MHz) δ 181.4, 109.7, 83.5, 51.2, 33.0, 29.6, 20.4, 19.6, 13.9, 7.4, 4.5; IR (neat, cm⁻¹) 2957, 2875, 2167, 1709, 1459, 1415, 1379, 1281, 1209, 1101, 1017; MS (EI) m/z (%) 269 ((M+1)⁺, 2.54), 103 (100); Elemental analysis calcd for C₁₅H₂₈O₂Si: C, 67.11, H, 10.51, found: C, 67.33, H, 10.52. **3k/2k** = 98/2 determined by ¹H NMR analysis of the crude reaction mixture before separation.

The ee value of the following compounds 3 was determined after its conversion to the corresponding benzyl ester 4.

(12) (2S,3R)-2,3-Dimethyl-5-(trimethylsilyl)pent-4-ynoic acid (2S,3R)-3a

(zxb-10-108)

The reaction of FeCl₃'6H₂O (13.0 mg, 0.05 mmol), (2*S*,3*S*)-**1a** (180.3 mg, 1 mmol, 98% ee), THF (5 mL), MeMgCl (1 mL, 3 M in THF, 3 mmol) afforded (2*S*,3*R*)-**3a** (159.1 mg, 81%) (eluent: petroleum ether: ethyl acetate = 5 : 1 - 2 : 1): Solid: m.p. 66.5-67.9 °C (hexane/ethyl acetate); $[\alpha]^{20}_{D}$ = -16.6 (*c* = 1.15, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 11.28 (brs, 1 H, COOH), 2.84 (pentet, *J* = 7.3 Hz, 1 H, CH), 2.42

(pentet, J = 7.4 Hz, 1 H, CH), 1.32 (d, J = 6.9 Hz, 3 H, CH₃), 1.22 (d, J = 6.9 Hz, 3 H, CH₃), 0.15 (s, 9 H, 3 × CH₃); ¹³C NMR (CDCl₃, 75 MHz) δ 181.7, 108.0, 86.6, 45.1, 30.0, 19.4, 14.8, 0.7; IR (neat, cm⁻¹) 2976, 2938, 2899, 2168, 1711, 1459, 1427, 1373, 1294, 1268, 1245, 1212, 1088; MS (EI) m/z (%) 198 (M⁺, 0.17), 75 (100); Elemental analysis calcd for C₁₀H₁₈O₂Si: C, 60.56, H, 9.15, found: C, 60.53, H, 8.98. **3a/2a** = 98/2 determined by ¹H NMR analysis of the crude reaction mixture before separation.

(2S,3R)-Benzyl 2,3-dimethyl-5-(trimethylsilyl)pent-4-ynoate (2S,3R)-4a (zxb-11-70)

Typical Procedure 2: To a solution of (2S,3R)-**3a** (29.5 mg, 0.15 mmol) and BnBr (38.6 mg, 0.23 mmol) in DMF (2 mL) were added NaHCO₃ (38.8 mg, 0.46 mmol). The resulting mixture was stirred at room temperature until complete conversion of (2S,3R)-**3a** as monitored by TLC. The reaction mixture was then quenched with water (5 mL), extracted with Et₂O (25 mL), washed with brine, and dried over anhydrous Na₂SO₄. After filtration and evaporation, flash chromatography on silica gel (eluent: petroleum ether/diethyl ether = 80/1) afforded (2S,3R)-**4a** (36.5 mg, 85%, 99% ee: HPLC conditions: OJ-H column, rate = 0.22 mL/min, eluent: hexane/*i*-PrOH = 100:0, λ = 214 nm, t_R 33.6 min (minor), 36.0 min (major)): Liquid; [α]²⁰_D = -13.1 (*c* = 1.28, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.40-7.31 (m, 5 H, ArH), 5.16 (d, *J* = 12.6 Hz, 1 H, one proton of CH₂), 5.11 (d, *J* = 12.3 Hz, 1 H, one proton of CH₂), 2.85 (pentet, J = 7.3 Hz, 1 H, CH), 2.45 (pentet, J = 7.4 Hz, 1 H, CH), 1.30 (d, J = 7.2 Hz, 3 H, CH₃), 1.15 (d, J = 6.6 Hz, 3 H, CH₃), 0.13 (s, 9 H, 3 × CH₃); ¹³C NMR (CDCl₃, 75 MHz) δ 174.7, 136.0, 128.5, 128.1, 128.0, 108.4, 86.3, 66.2, 45.2, 30.3, 19.3, 14.9, 0.07; IR (neat, cm⁻¹) 2960, 2937, 2169, 1737, 1498, 1456, 1381, 1346, 1250, 1161, 1086, 1028; MS (EI) m/z (%) 288 (M⁺, 1.32), 91 (100); HRMS calcd for C₁₇H₂₄O₂Si (M⁺): 288.1546, found: 288.1549.

(13) (2*S*,3*R*)-2-Methyl-3-phenyl-5-(trimethylsilyl)pent-4-ynoic acid (2*S*,3*R*)-**3d** (zxb-10-111)

The reaction of FeCl₃·6H₂O (13.5 mg, 0.05 mmol), (2*S*,3*S*)-**1a** (181.2 mg, 1 mmol, 98% ee), THF (5 mL), PhMgCl (1.5 mL, 2 M in THF, 3 mmol) afforded (2*S*,3*R*)-**3d** (200.6 mg, 77%) (eluent: petroleum ether: ethyl acetate: dichloromethane = 20 : 1 : 1 - 10 : 1 : 1 - 2 : 1 : 0): Liquid; $[\alpha]^{20}_{D}$ = +12.8 (*c* = 1.20, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 10.83 (brs, 1 H, COOH), 7.44-7.20 (m, 5 H, ArH), 4.20 (d, *J* = 7.2 Hz, 1 H, CH), 2.79 (pentet, *J* = 6.9 Hz, 1 H, CH), 1.28 (d, *J* = 6.9 Hz, 3 H, CH₃), 0.20 (s, 9 H, 3 × CH₃); ¹³C NMR (CDCl₃, 75 MHz) δ 180.6, 139.0, 128.5, 127.9, 127.2, 104.4, 89.8, 46.6, 41.4, 13.3, 0.001; IR (neat, cm⁻¹) 3031, 2960, 2174, 1713, 1603, 1495, 1455, 1414, 1250; MS (EI) m/z (%) 260 (M⁺, 2.99), 159 (100); HRMS calcd for C₁₅H₂₀O₂Si

(M⁺): 260.1233, found: 260.1230. 3d/2d = 95/5 determined by ¹H NMR analysis of the crude reaction mixture before separation.

(2S,3R)-Benzyl 2,3-dimethyl-5-(trimethylsilyl)pent-4-ynoate (2S,3R)-4d (zxb-10-115)

Typical Procedure 3: To a solution of (2S,3R)-3d (34.1 mg, 0.13 mmol) and BnOH (41.2 mg, 0.40 mmol) in DCM (2 mL) were added DMAP (2.0 mg, 0.02 mmol) and DCC (30.5 mg, 0.15 mmol). The resulting mixture was stirred at room temperature until complete conversion of (2S, 3R)-3d as monitored by TLC. The reaction mixture was then quenched with water (5 mL), extracted with Et₂O (25 mL), washed with HCl (5%), NaHCO₃ (aq), brine, and dried over anhydrous Na₂SO₄. After filtration and evaporation, flash chromatography on silica gel (eluent: petroleum ether/diethyl ether = 100/1) afforded (2S,3R)-4d (34.2 mg, 71%, 98% ee: HPLC conditions: OJ-H column, rate = 0.5 mL/min, eluent: hexane/*i*-PrOH = 199/1, λ = 215 nm, t_R 11.0 min (minor), 12.5 min (major)): Liquid; $[\alpha]_{D}^{20} = +6.9$ (c = 1.71, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.40-7.23 (m, 8 H, ArH), 7.23-7.15 (m, 2 H), 5.04 (d, J = 12.3 Hz, 1 H, one proton of CH₂), 4.98 (d, J = 12.3 Hz, 1 H, one proton of CH₂), 4.14 (d, J = 7.8Hz, 1 H, CH), 2.82 (pentet, J = 7.3 Hz, 1 H, CH), 1.32 (d, J = 6.9 Hz, 3 H, CH₃), 0.19 (s, 9 H, $3 \times CH_3$); ¹³C NMR (CDCl₃, 75 MHz) δ 173.9, 139.3, 135.8, 128.4, 128.04, 127.96, 127.1, 105.0, 89.4, 66.3, 47.0, 41.9, 14.2, 0.03; IR (neat, cm⁻¹) 3064, 3032,

(2S, 3R)-3g (zxb-10-172)

2959, 2898, 2173, 1738, 1602, 1495, 1455, 1381, 1344, 1308, 1250, 1162, 1121, 1067, 1029; MS (EI) m/z (%) 350 (M⁺, 1.01), 259 (100), 73 (100), 91 (100); HRMS calcd for C₂₂H₂₆O₂Si (M⁺): 350.1702, found: 350.1699.

(14) (2S,3R)-3-(4-Methoxyphenyl)-2-methyl-5-(trimethylsilyl)pent-4-ynoic acid

The reaction of FeCl₃:6H₂O (13.7 mg, 0.05 mmol), (2*S*,3*S*)-**1a** (181.2 mg, 1 mmol, 98% ee), THF (5 mL), 4-methoxymagnisum bromide (6 mL, 0.5 M in THF, 3 mmol) afforded (2*S*,3*R*)-**3g** (206.7 mg, 72%) (eluent: petroleum ether: ethyl acetate = 10 : 1 - 5 : 1 - 2 : 1): Solid: m.p. 83.3-83.7 °C (hexane/ethyl acetate); $[\alpha]^{20}_{D}$ = +22.9 (*c* = 1.97, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 9.65 (brs, 1 H, COOH), 7.28 (d, *J* = 8.7 Hz, 2 H, ArH), 6.86 (d, *J* = 8.4 Hz, 2 H, ArH), 4.11 (d, *J* = 7.2 Hz, 1 H, CH), 3.80 (s, 3 H, CH₃), 2.74 (pentet, *J* = 6.9 Hz, 1 H, CH), 1.27 (d, *J* = 6.9 Hz, 3 H, CH₃), 0.18 (s, 9 H, 3 × CH₃); ¹³C NMR (CDCl₃, 75 MHz) δ 180.5, 158.7, 131.1, 128.9, 113.8, 104.8, 89.5, 55.2, 46.7, 40.6, 13.5, 0.0; IR (neat, cm⁻¹) 2959, 2173, 1712, 1612, 1512, 1462, 1413, 1303, 1250, 1177, 1108, 1036; MS (EI) m/z (%) 290 (M⁺, 30.0), 217 (100); Elemental analysis calcd for C₁₆H₂₂O₃Si: C, 66.17, H, 7.64, found: C, 66.21, H, 7.68. **3g/2g** = 95/5 determined by ¹H NMR analysis of the crude reaction mixture before separation.

(2S,3R)-Benzyl 3-(4-methoxyphenyl)-2-methyl-5-(trimethylsilyl)pent-4-ynoate

(2*S*,3*R*)-4g (zxb-10-196)

Following the Typical Procedure 3. The reaction of (2*S*,3*R*)-**3g** (58.1 mg, 0.20 mmol), BnOH (65.7 mg, 0.61 mmol), DCM (3 mL), DMAP (2.7 mg, 0.02 mmol), and DCC (47.2 mg, 0.23 mmol) afforded (2*S*,3*R*)-**4g** (49.8 mg, 65%, 97% ee: HPLC conditions: OJ-H column, rate = 0.4 mL/min, eluent: hexane/*i*-PrOH = 99/1, λ = 254 nm, t_R 29.1 min (minor), 33.6 min (major)): Liquid; [α]²⁰_D = +12.0 (*c* = 1.44, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.37-7.27 (m, 3 H, ArH), 7.27-7.20 (m, 2 H, ArH), 7.20-7.12 (m, 2 H, ArH), 6.80 (d, *J* = 8.7 Hz, 2 H, ArH), 5.03 (d, *J* = 12.3 Hz, 1 H, one proton of CH₂), 4.95 (d, *J* = 12.3 Hz, 1 H, one proton of CH₂), 4.03 (d, *J* = 8.1 Hz, 1 H, CH), 3.78 (s, 3 H, CH₃), 2.77 (pentet, *J* = 7.2 Hz, 1 H, CH), 1.30 (d, *J* = 6.9 Hz, 3 H, CH₃), 0.16 (s, 9 H, 3 × CH₃); ¹³C NMR (CDCl₃, 75 MHz) δ 174.0, 158.6, 135.8, 131.3, 129.0, 128.4, 128.0, 127.9, 113.8, 105.4, 89.0, 66.2, 55.2, 47.2, 41.2, 14.4, 0.04; IR (neat, cm⁻¹) 3034, 2957, 2836, 2172, 1737, 1611, 1511, 1456, 1380, 1343, 1303, 1250, 1177, 1035; MS (EI) m/z (%) 380 (M⁺, 5.0), 289 (100), 217 (100), 91 (100); HRMS calcd for C₂₃H₂₈O₃Si (M⁺): 380.1808, found: 380.1806.

(15) (2*R*,3*S*)-2-Allyl-3-methyl-5-(trimethylsilyl)pent-4-ynoic acid (2*R*,3*S*)-**3j** (zxb-11-44)

The reaction of FeCl₃'6H₂O (13.7 mg, 0.05 mmol), (2*R*,3*R*)-**1d** (208.3 mg, 1 mmol, 99% ee), THF (5 mL), MeMgCl (1 mL, 3 M in THF, 3 mmol) afforded (2*R*,3*S*)-**3j** (182.4 mg, 81%) (eluent: petroleum ether: ethyl acetate: dichloromethane = 20 : 1 : 1 - 10 : 1 : 1 - 2 : 1 : 0): Liquid; $[\alpha]^{20}_{D}$ = +21.8 (*c* = 1.25, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 10.49 (brs, 1 H, COOH), 5.90-5.70 (m, 1 H, CH=), 5.20-5.00 (m, 2 H, CH₂=), 2.75 (pentet, *J* = 7.3 Hz, 1 H, CH), 2.68-2.55 (m, 1 H, CH), 2.52-2.36 (m, 2 H, CH₂), 1.22 (t, *J* = 7.2 Hz, 3 H, CH₃), 0.15 (s, 9 H, 3 × CH₃); ¹³C NMR (CDCl₃, 75 MHz) δ 180.1, 134.6, 117.3, 108.0, 87.0, 51.1, 35.1, 29.0, 19.3, 0.1; IR (neat, cm⁻¹) 3081, 2961, 2168, 1712, 1643, 1442, 1413, 1281, 1251, 1209; MS (EI) m/z (%) 224 (M⁺, 1.0), 99 (100), 75 (100); HRMS calcd for C₁₂H₂₀O₂Si (M⁺): 224.1233, found: 224.1236. **3j**/2**j** = 99/1 determined by ¹H NMR analysis of the crude reaction mixture before separation.

(2*R*,3*S*)-Benzyl 2-allyl-3-methyl-5-(trimethylsilyl)pent-4-ynoate (2*R*,3*S*)-**4j** (zxb-11-108)

Following the Typical Procedure 2. The reaction of (2R,3S)-3j (45.2 mg, 0.20

mmol), BnBr (36 μL, d = 1.43 mg/mL, 51.5 mg, 0.30 mmol), DMF (2 mL), and NaHCO₃ (51.0 mg, 0.61 mmol) afforded (2*R*,3*S*)-**4j** (58.6 mg, 92%, 98% ee: HPLC conditions: OJ-H column, rate = 0.15 mL/min, eluent: hexane/*i*-PrOH = 100:0, $\lambda =$ 214 nm, t_R 51.7 min (major), t_R 55.8 min (minor)): Liquid; [α]²⁰_D = -0.4 (c = 1.55, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.40-7.30 (m, 5 H, ArH), 5.82-5.68 (m, 1 H, CH=), 5.11 (s, 2 H, CH₂), 5.09-4.95 (m, 2 H, CH₂=), 2.83-2.71 (m, 1 H, CH), 2.64-2.56 (m, 1 H, CH), 2.53-2.36 (m, 2 H, CH₂), 1.15 (d, J = 6.9 Hz, 3 H, CH₃), 0.14 (s, 9 H, 3 × CH₃); ¹³C NMR (CDCl₃, 75 MHz) δ 173.6, 135.8, 134.9, 128.5, 128.25, 128.19, 117.0, 108.4, 86.7, 66.2, 51.2, 35.4, 29.3, 19.3, 0.1; IR (neat, cm⁻¹) 3063, 3034, 2959, 2166, 1735, 1642, 1498, 1456, 1381, 1352, 1250, 1161; MS (EI) m/z (%) 314 (M⁺, 0.98), 105 (100), 91 (100), 73 (100); HRMS calcd for C₁₉H₂₆O₂Si (M⁺): 314.1702, found: 314.1692.

(16) (2*S*,3*R*)-3-Methyl-2-propyl-5-(trimethylsilyl)pent-4-ynoic acid (2*S*,3*R*)-**3**l (zxb-11-102)

The reaction of FeCl₃[•]6H₂O (13.8 mg, 0.05 mmol), (2*S*,3*S*)-**1f** (208.3 mg, 1 mmol, 97% ee), THF (5 mL), MeMgCl (1 mL, 3 M in THF, 3 mmol) afforded (2*S*,3*R*)-**3l** (164.8 mg, 74%) (eluent: petroleum ether: ethyl acetate: dichloromethane = 20 : 1 : 1 - 10 : 1 : 1 - 2 : 1 : 0): Liquid; $[\alpha]^{20}_{D}$ = -22.6 (*c* = 1.83, CHCl₃); ¹H NMR (300 MHz,

CDCl₃) δ 10.02 (brs, 1 H, COOH), 2.80-2.66 (m, 1 H, CH), 2.33 (td, *J* = 9.9 and 3.6 Hz, 1 H, CH), 1.88-1.60 (m, 2 H, CH₂), 1.50-1.15 (m, 5 H, CH₂ + CH₃), 0.93 (t, *J* = 7.2 Hz, 3 H, CH₃), 0.14 (s, 9 H, 3 × CH₃); ¹³C NMR (CDCl₃, 75 MHz) δ 181.3, 108.5, 86.5, 51.1, 33.0, 29.5, 20.4, 19.4, 13.9, 0.1; IR (neat, cm⁻¹) 2960, 2875, 2170, 1709, 1466, 1420, 1380, 1281, 1250, 1209, 1156, 1101; MS (EI) m/z (%) 227 ((M+1)⁺, 12.58), 226 (M⁺, 1.64), 183 (100), 75 (100), 73 (100); HRMS calcd for C₁₂H₂₂O₂Si (M⁺): 226.1389, found: 226.1386. **3I/2I** = 98/2 determined by ¹H NMR analysis of the crude reaction mixture before separation.

(2*S*,3*R*)-Benzyl 3-methyl-2-propyl-5-(trimethylsilyl)pent-4-ynoate (2*S*,3*R*)-**4**l (zxb-11-105)

Following the Typical Procedure 2. The reaction of (2S,3R)-31 (45.6 mg, 0.20 mmol), BnBr (36 µL, d = 1.43 mg/mL, 51.5 mg, 0.30 mmol), DMF (2 mL), and NaHCO₃ (51.3 mg, 0.61 mmol) afforded (2S,3R)-41 (60.2 mg, 94%, 97% ee: HPLC conditions: OJ-H column, rate = 0.20 mL/min, eluent: hexane/*i*-PrOH = 100:0, $\lambda = 254$ nm, t_R 33.0 min (minor), 35.6 min (major)): Liquid; [α]²⁰_D = -4.7 (c = 2.02, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.42-7.27 (m, 5 H, ArH), 5.13 (s, 2 H, CH₂), 2.82-2.66 (m, 1 H, CH), 2.39 (td, J = 9.9 and 3.8 Hz, 1 H, CH), 1.87-1.60 (m, 2 H, CH₂), 1.40-1.18 (m, 2 H, CH₂), 1.13 (d, J = 6.9 Hz, 3 H, CH₃), 0.90 (t, J = 7.4 Hz, 3 H,

CH₃), 0.14 (s, 9 H, 3 × CH₃); ¹³C NMR (CDCl₃, 75 MHz) δ 174.5, 135.9, 128.5, 128.1, 108.9, 86.2, 66.1, 51.2, 33.3, 29.8, 20.4, 19.4, 13.9, 0.1; IR (neat, cm⁻¹) 3034, 2959, 2874, 2168, 1735, 1498, 1456, 1381, 1353, 1250, 1212, 1158, 1099; MS (EI) m/z (%) 316 (M⁺, 4.37), 91 (100), 73 (100); HRMS calcd for C₁₉H₂₈O₂Si (M⁺): 316.1859, found: 316.1872.

(17) (2R,3S)-3-Methyl-2-propyl-5-(trimethylsilyl)pent-4-ynoic acid (2R,3S)-3l

(zxb-11-103)

The reaction of FeCl₃·6H₂O (13.7 mg, 0.05 mmol), (2*R*,3*R*)-**1f** (209.1 mg, 1 mmol, 99% ee), THF (5 mL), MeMgCl (1 mL, 3 M in THF, 3 mmol) afforded (2*R*,3*S*)-**3l** (164.9 mg, 73%) (eluent: petroleum ether: ethyl acetate: dichloromethane = 20 : 1 : 1 - 10 : 1 : 1 - 2 : 1 : 0): Liquid; $[\alpha]^{20}_{D}$ = +23.0 (*c* = 1.70, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 10.10 (brs, 1 H, COOH), 2.80-2.66 (m, 1 H, CH), 2.33 (td, *J* = 9.8 and 3.6 Hz, 1 H, CH), 1.88-1.60 (m, 2 H, CH₂), 1.50-1.15 (m, 5 H, CH₂ + CH₃), 0.93 (t, *J* = 7.2 Hz, 3 H, CH₃), 0.14 (s, 9 H, 3 × CH₃); ¹³C NMR (CDCl₃, 75 MHz) δ 181.3, 108.5, 86.5, 51.1, 33.0, 29.5, 20.4, 19.4, 13.9, 0.1; IR (neat, cm⁻¹) 2960, 2875, 2170, 1708, 1466, 1420, 1281, 1250, 1209, 1101; MS (EI) m/z (%) 227 ((M+1)⁺, 12.86), 226 (M⁺, 1.44), 183 (100), 73 (100); HRMS calcd for C₁₂H₂₂O₂Si (M⁺): 226.1389, found: 226.1398. **3l/2l** = 97/3 determined by ¹H NMR analysis of the crude reaction mixture before separation.

(2R,3S)-Benzyl 3-methyl-2-propyl-5-(trimethylsilyl)pent-4-ynoate (2R,3S)-4l

(zxb-11-106)

Following the Typical Procedure 2. The reaction of (2*R*,3*S*)-**31** (45.4 mg, 0.20 mmol), BnBr (36 μL, d = 1.43 mg/mL, 51.5 mg, 0.30 mmol), DMF (2 mL), and NaHCO₃ (51.0 mg, 0.61 mmol) afforded (2*R*,3*S*)-**41** (60.2 mg, 94%, > 99% ee: HPLC conditions: OJ-H column, rate = 0.20 mL/min, eluent: hexane/*i*-PrOH = 100:0, $\lambda = 254$ nm, t_R 31.5 min (major)): Liquid; [α]²⁰_D = +4.6 (c = 1.70, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.42-7.28 (m, 5 H, ArH), 5.13 (s, 2 H, CH₂), 2.80-2.67 (m, 1 H, CH), 2.39 (td, J = 9.9 and 4.0 Hz, 1 H, CH), 1.87-1.60 (m, 2 H, CH₂), 1.40-1.20 (m, 2 H, CH₂), 1.13 (d, J = 6.6 Hz, 3 H, CH₃), 0.90 (t, J = 7.2 Hz, 3 H, CH₃), 0.14 (s, 9 H, 3 × CH₃); ¹³C NMR (CDCl₃, 75 MHz) δ 174.5, 135.9, 128.5, 128.15, 128.13, 108.9, 86.2, 66.1, 51.2, 33.3, 29.8, 20.4, 19.4, 13.9, 0.1; IR (neat, cm⁻¹) 3034, 2959, 2874, 2168, 1735, 1498, 1456, 1381, 1353, 1250, 1212, 1158, 1099; MS (EI) m/z (%) 316 (M⁺, 4.19), 91 (100), 73 (100); HRMS calcd for C₁₉H₂₈O₂Si (M⁺): 316.1859, found: 316.1866.

(18) (2*S*,3*R*)-5-(*t*-butyldimethylsilyl)-2,3-dimethylpent-4-ynoic acid (2*S*,3*R*)-**3m** (zxb-11-114)

The reaction of FeCl₃·6H₂O (54.6 mg, 0.20 mmol), (2*S*,3*S*)-1g (893.4 mg, 4 mmol, > 99% ee), THF (20 mL), MeMgCl (4 mL, 3 M in THF, 12 mmol) afforded (2*S*,3*R*)-3m (896.7 mg, 94%) (eluent: petroleum ether: ethyl acetate: dichloromethane = 20 : 1 : 1 - 10 : 1 : 1 - 2 : 1 : 0): Solid: m.p. 58.2-58.8 °C (hexane/ethyl acetate); $[\alpha]^{20}_{D} = -16.4$ (*c* = 1.77, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 11.31 (brs, 1 H, COOH), 2.87 (pentet, *J* = 7.1 Hz, 1 H, CH), 2.42 (pentet, *J* = 7.2 Hz, 1 H, CH), 1.31 (d, *J* = 6.9 Hz, 3 H, CH₃), 1.22 (d, *J* = 6.6 Hz, 3 H, CH₃), 0.91 (s, 9 H, 3 × CH₃), 0.07 (s, 6 H, 2 × CH₃); ¹³C NMR (CDCl₃, 75 MHz) δ 181.6, 108.4, 84.6, 45.1, 30.1, 26.0, 19.5, 16.5, 14.5, -4.5; IR (neat, cm⁻¹) 2957, 2935, 2877, 2170, 1710, 1462, 1414, 1338, 1250, 1141, 1091, 1052, 1008; MS (EI) m/z (%) 241 ((M+1)⁺, 19.81), 240 (M⁺, 0.27), 183 ((M-C_4H_9)⁺, 79.47), 75 (100); Elemental analysis calcd for C₁₃H₂₄O₂Si: C, 64.95, H, 10.06, found: C, 65.19, H, 9.88. **3m/2m** = 98/2 determined by ¹H NMR analysis of the crude reaction mixture before separation.

(2*S*,3*R*)-benzyl 5-(tert-butyldimethylsilyl)-2,3-dimethylpent-4-ynoate (2*S*,3*R*)-**4m** (zxb-11-116)

Following the Typical Procedure 2. The reaction of (2*S*,3*R*)-**3m** (717.6 mg, 2.99 mmol), BnBr (540 μL, *d* = 1.43 mg/mL, 772.2 mg, 4.5 mmol), DMF (30 mL), and NaHCO₃ (764.4 mg, 8.99 mmol) afforded (2*S*,3*R*)-**4m** (950.7 mg, 96%, 99% ee: HPLC conditions: OJ-H column, rate = 0.15 mL/min, eluent: hexane/*i*-PrOH = 100:0, $\lambda = 214$ nm, t_R 45.8 min (minor), 48.6 min (major)): Liquid; [α]²⁰_D = -15.0 (*c* = 1.93, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.42-7.28 (m, 5 H, ArH), 5.16 (d, *J* = 12.6 Hz, 1 H, one proton of CH₂), 5.11 (d, *J* = 12.3 Hz, 1 H, one proton of CH₂), 2.89 (pentet, *J* = 7.1 Hz, 1 H, CH), 2.46 (pentet, *J* = 7.2 Hz, 1 H, CH), 1.32 (d, *J* = 7.2 Hz, 3 H, CH₃), 1.17 (d, *J* = 6.9 Hz, 3 H, CH₃), 0.92 (s, 9 H, 3 × CH₃), 0.08 (s, 6 H, 2 × CH₃); ¹³C NMR (CDCl₃, 75 MHz) δ 174.7, 135.9, 128.5, 128.1, 128.0, 108.8, 84.4, 66.2, 45.2, 30.3, 26.0, 19.5, 16.5, 14.8, -4.5; IR (neat, cm⁻¹) 3034, 2954, 2931, 2884, 2856, 2169, 1738, 1498, 1457, 1382, 1346, 1256, 1161, 1087, 1057, 1028, 1008; MS (EI) m/z (%) 331 ((M+1)⁺, 20.52), 330 (M⁺, 1.95), 91 (100); HRMS calcd for C₂₀H₃₀O₂Si (M⁺): 330.2015, found: 330.2016.

(19) (2R,3S)-5-(t-butyldimethylsilyl)-2,3-dimethylpent-4-ynoic acid (2R,3S)-3m

TBS

The reaction of FeCl₃·6H₂O (54.8 mg, 0.20 mmol), (2R,3R)-1g (897.6 mg, 4 mmol, > 99% ee), THF (20 mL), MeMgCl (4 mL, 3 M in THF, 12 mmol) afforded

(2R,3S)-**3m** (901.5 mg, 94%) (eluent: petroleum ether: ethyl acetate: dichloromethane = 20 : 1 : 1 - 10 : 1 : 1 - 2 : 1 : 0): Solid: m.p. 58.1-58.8 °C (hexane/ethyl acetate); $[\alpha]^{20}_{D}$ = +16.6 (c = 1.71, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 11.00 (brs, 1 H, COOH), 2.87 (pentet, J = 6.8 Hz, 1 H, CH), 2.43 (pentet, J = 6.7 Hz, 1 H, CH), 1.32 (d, J = 6.9 Hz, 3 H, CH₃), 1.22 (d, J = 6.9 Hz, 3 H, CH₃), 0.91 (s, 9 H, 3 × CH₃), 0.07 (s, 6 H, 2 × CH₃); ¹³C NMR (CDCl₃, 75 MHz) δ 181.5, 108.5, 84.7, 45.1, 30.1, 26.0, 19.5, 16.5, 14.5, -4.5; IR (neat, cm⁻¹) 2957, 2935, 2877, 2170, 1710, 1461, 1414, 1337, 1249, 1141, 1091, 1051; MS (EI) m/z (%) 241 ((M+1)⁺, 10.34), 75 (100); Elemental analysis calcd for C₁₃H₂₄O₂Si: C, 64.95, H, 10.06, found: C, 65.17, H, 9.90. **3m/2m** = 99/1 determined by ¹H NMR analysis of the crude reaction mixture before separation.

(2*R*,3*S*)-benzyl 5-(tert-butyldimethylsilyl)-2,3-dimethylpent-4-ynoate (2*R*,3*S*)-**4m** (zxb-11-115)

Following the Typical Procedure 2. The reaction of (2*R*,3*S*)-**3m** (719.3 mg, 3.0 mmol), BnBr (540 μ L, *d* = 1.43 mg/mL, 772.2 mg, 4.5 mmol), DMF (30 mL), and NaHCO₃ (765.1 mg, 9.0 mmol) afforded (2*R*,3*S*)-**4m** (965.2 mg, 98%, 98% ee: HPLC conditions: OJ-H column, rate = 0.15 mL/min, eluent: hexane/*i*-PrOH = 100:0, λ = 214 nm, t_R 43.4 min (major), 48.7 min (minor)): Liquid; [α]²⁰_D = +15.5 (*c* = 1.77, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.42-7.30 (m, 5 H, ArH), 5.14 (d, *J* = 12.6 Hz, 1 H, one proton of CH₂), 5.10 (d, *J* = 12.6 Hz, 1 H, one proton of CH₂), 2.89 (pentet, *J*

= 7.1 Hz, 1 H, CH), 2.46 (pentet, J = 7.2 Hz, 1 H, CH), 1.32 (d, J = 7.2 Hz, 3 H, CH₃), 1.17 (d, J = 6.9 Hz, 3 H, CH₃), 0.92 (s, 9 H, 3 × CH₃), 0.08 (s, 6 H, 2 × CH₃); ¹³C NMR (CDCl₃, 75 MHz) δ 174.7, 135.9, 128.5, 128.2, 128.1, 108.8, 84.4, 66.3, 45.2, 30.3, 26.0, 19.5, 16.5, 14.8, -4.5; IR (neat, cm⁻¹) 3034, 2953, 2930, 2884, 2856, 2169, 1738, 1498, 1457, 1382, 1346, 1256, 1161, 1087, 1057, 1028, 1008; MS (EI) m/z (%) 331 ((M+1)⁺, 21.43), 330 (M⁺, 1.00), 91 (100); HRMS calcd for C₂₀H₃₀O₂Si (M⁺): 330.2015, found: 330.2010.

The following compounds 3 was prepared according to Typical Procedure 4

(1) 3-Butyl-5-(trimethylsilyl)pent-4-ynoic acid **3n** (zxb-11-89)

TMS TMS $h = \frac{n - C_4 H_9 MgCl}{n + in THF}$ 1b $h = \frac{5 \mod\% Fe(acac)_3}{1 equiv Nal}$ $h = \frac{5 \mod\% Fe(acac)_3}{1 equiv Nal}$ $h = \frac{1}{1 equiv Nal}$ $h = \frac{1}{1$

Typical procedure 4: To a mixture of Fe(acac)₃ (17.3 mg, 0.05 mmol), NaI (151.3 mg, 1.01 mmol), H₂O (5.4 μ L, *d* = 1 g/mL, 5.4 μ g, 0.30 mmol), **1b** (166.8 mg, 0.99 mmol) in Et₂O (5 mL) was added dropwise a solution of C₄H₉MgCl (1.75 mL, 2 M in THF, 3.5 mmol) at -78 °C within 3 min under N₂ atmosphere. After being stirred at -78 ° C for 1 h, the mixture was quenched with EtOH (0.5 mL), and then acidified with 5% HCl (aq) to pH = 1. The resulting mixture was extracted with ether (15 mL × 3), washed with brine, dried over Na₂SO₄, filtrated, and concentrated. The residue was purified by flash chromatography on silica gel (eluent: petroleum ether: ethyl acetate: dichloromethane = 20 : 1 : 1 - 10 : 1 : 1 - 2 : 1: 0) afforded **3n** (159.8 mg, 71%):

Liquid; ¹H NMR (300 MHz, CDCl₃) δ 10.23 (brs, 1 H, COOH), 2.92-2.78 (m, 1 H, CH), 2.57 (dd, J = 15.6 and 7.2 Hz, 1 H, one proton of CH₂), 2.46 (dd, J = 15.6 and 7.4 Hz, 1 H, one proton of CH₂), 1.60-1.20 (m, 6 H, 3 × CH₂), 0.91 (t, J = 7.1 Hz, 3 H, CH₃), 0.14 (s, 9 H, 3 × CH₃); ¹³C NMR (CDCl₃, 75 MHz) δ 178.0, 108.2, 86.2, 39.9, 34.0, 29.2, 28.9, 22.3, 14.0, 0.1; IR (neat, cm⁻¹) 2959, 2933, 2862, 2171, 1714, 1411, 1344, 1289, 1280, 1250, 1173; MS (EI) m/z (%) 226 (M⁺, 1.0), 75 (100), 73 (100); HRMS calcd for C₁₂H₂₂O₂Si (M⁺): 226.1389, found: 226.1385. **3n/2n** = 94/6 determined by ¹H NMR analysis of the crude reaction mixture before separation.

The reaction of Fe(acac)₃ (17.5 mg, 0.05 mmol), NaI (151.0 mg, 1.00 mmol), H₂O (5.4 µL, d = 1 g/mL, 5.4 µg, 0.30 mmol), 1b (168.0 mg, 1.00 mmol), Et₂O (5 mL), and n-C₃H₁₁MgCl (1.75 mL, 2 M in THF, 3.5 mmol) afforded 30 (166.1 mg, 69%): Liquid; ¹H NMR (300 MHz, CDCl₃) δ 10.78 (b s, 1 H, COOH), 2.92-2.78 (m, 1 H, CH), 2.57 (dd, J = 15.6 and 7.2 Hz, 1 H, one proton of CH₂), 2.46 (dd, J = 15.6 and 7.4 Hz, 1 H, one proton of CH₂), 1.58-1.20 (m, 8 H, 4 × CH₂), 0.88 (t, J = 6.6 Hz, 3 H, CH₃), 0.12 (s, 9 H, 3 × CH₃); ¹³C NMR (CDCl₃, 75 MHz) δ 178.1, 108.2, 86.1, 39.9, 34.3, 31.4, 28.9, 26.6, 22.5, 14.0, 0.1; IR (neat, cm⁻¹) 2959, 2931, 2860, 2171, 1714, 1411, 1284, 1250, 1170; MS (EI) m/z (%) 240 (M⁺, 1.18), 75 (100); HRMS calcd for $C_{13}H_{24}O_2Si$ (M⁺): 240.1546, found: 240.1549. 3o/2o = 94/6 determined by

¹H NMR analysis of the crude reaction mixture before separation.

(3) (S)-3-Butyl-5-(trimethylsilyl)pent-4-ynoic acid (S)-3n (zxb-12-37)

The reaction of Fe(acac)₃ (17.4 mg, 0.05 mmol), NaI (148.2 mg, 0.99 mmol), H₂O (5.4 µL, d = 1 g/mL, 5.4 µg, 0.30 mmol), (*R*)-1b (167.2 mg, 1.00 mmol, 98% ee), Et₂O (5 mL), and *n*-C₄H₉MgCl (1.75 mL, 2 M in THF, 3.5 mmol) afforded (*S*)-3n (151.9 mg, 68%) (eluent: petroleum ether: ethyl acetate: dichloromethane = 20 : 1 : 1 - 10 : 1 : 1 - 2 : 1: 0): Liquid; $[\alpha]^{20}_{D} = +1.1$ (c = 1.98, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 10.53 (brs, 1 H, COOH), 2.92-2.78 (m, 1 H, CH), 2.57 (dd, J = 15.6 and 7.2 Hz, 1 H, one proton of CH₂), 2.46 (dd, J = 15.6 and 7.2 Hz, 1 H, one proton of CH₂), 1.56-1.22 (m, 6 H, 3 × CH₂), 0.90 (t, J = 6.9 Hz, 3 H, CH₃), 0.12 (s, 9 H, 3 × CH₃); ¹³C NMR (CDCl₃, 75 MHz) δ 178.1, 108.2, 86.1, 39.9, 34.0, 29.2, 28.9, 22.3, 14.0, 0.1; IR (neat, cm⁻¹) 2959, 2932, 2862, 2171, 1714, 1412, 1343, 1287, 1250, 1174, 1128; MS (EI) m/z (%) 226 (M⁺, 1.02), 225 ((M-1)⁺, 3.01), 75 (100); HRMS calcd for C₁₂H₂₂O₂Si (M⁺): 226.1389, found: 226.1381. **3n/2n** = 94/6 determined by ¹H NMR analysis of the crude reaction mixture before separation.

(S)-Benzyl 3-((trimethylsilyl)ethynyl)heptanoate (S)-4n (zxb-12-43)

Following the Typical Procedure 2. The reaction of (*S*)-**3n** (77.9 mg, 0.34 mmol), BnBr (61 μL, *d* = 1.43 mg/mL, 87.2 mg, 0.51 mmol), DMF (3 mL), and NaHCO₃ (87.2 mg, 1.03 mmol) afforded (*S*)-**4n** (98.9 mg, 91%, 98% ee: HPLC conditions: OJ-H column, rate = 0.6 mL/min, eluent: hexane/*i*-PrOH = 100:0, λ = 214 nm, t_R 22.0 min (minor), 30.1 min (major)): Liquid; [*α*]²⁰_D = +4.2 (*c* = 1.75, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.42-7.30 (m, 5 H, ArH), 5.14 (s, 2 H, CH₂), 2.96-2.84 (m, 1 H, CH), 2.59 (dd, *J* = 15.3 and 7.5 Hz, 1 H, one proton of CH₂), 2.48 (dd, *J* = 15.6 and 7.1 Hz, 1 H, one proton of CH₂), 1.54-1.24 (m, 6 H, 3 × CH₂), 0.90 (t, *J* = 7.1 Hz, 3 H, CH₃), 0.13 (s, 9 H, 3 × CH₃); ¹³C NMR (CDCl₃, 75 MHz) δ 171.4, 135.9, 128.5, 128.2, 128.1, 108.5, 85.8, 66.3, 40.1, 34.1, 29.1, 22.3, 13.9, 0.1; IR (neat, cm⁻¹) 3067, 3034, 2958, 2932, 2860, 2169, 1740, 1498, 1456, 1380, 1352, 1249, 1158, 1102; MS (EI) m/z (%) 316 (M⁺, 3.08), 91 (100), 73 (100); HRMS calcd for C₁₉H₂₈O₂Si (M⁺): 316.1859, found: 316.1853.

2. Desilylation and enantioselective allenylation of 4m

(1) $(S_a, 2S, 3S)$ -Benzyl 6-cyclohexyl-2,3-dimethylhexa-4,5-dienoate $(S_a, 2S, 3S)$ -5 (zxb-11-138)

Typical Procedure 5: To a solution of (2S,3R)-**4m** (164.5 mg, 0.50 mmol) in THF (3 mL) was added TBAF (0.5 mL, 1 M in THF, 0.5 mmol). After stirring for 2 h at rt, the resulting solution was quenched with water (5 mL), extracted with ether (15 mL × 3), washed with brine, dried over Na₂SO₄, filtrated, and evaperated. The residue was purified by flash chromatography on silica gel (eluent: petroleum ether: ethyl ether = 60 : 1) to afford (2*S*,3*R*)-benzyl 2,3-dimethylpent-4-ynoate (2*S*,3*R*)-**4o**, which was used directly in the next step.

To a reaction tube was added ZnBr₂ (90.3 g, 0.40 mmol). This reaction tube was then dried under vacuum with a heating gun. (*R*)-diphenylprolinol (156.4 mg, 0.62 mmol), CyCHO (101.2 mg, 0.90 mmol)/toluene (1 mL), and (2*S*,3*R*)-benzyl 2,3-dimethylpent-4-ynoate (2*S*,3*R*)-**4o**/toluene (2 mL) were then added sequentially under a N₂ atmosphere. The reaction tube was then placed in a pre-heated oil bath at 120 °C. After the reaction was complete as monitored by TLC, the reaction mixture was cooled to rt and the crude reaction mixture was filtered through a short pad of silica gel (2 cm) eluted with ether. After evaporation, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl ether = 80:1) to afford (*S_a*,2*S*,3*S*)-**5** (88.5 mg, 57%, 99% ee: HPLC conditions: OJ-H column, rate = 0.7 mL/min, eluent: hexane/*i*-PrOH = 400:1, λ = 214 nm, t_R 14.8 min (minor), 15.8 min (major)): Liquid; [α]²⁰_D = +11.6 (*c* = 1.82, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.40-7.30 (m, 5 H, ArH), 5.19-5.00 (m, 4 H, CH₂ + 2 × CH=), 2.58-2.35 (m, 2 H, 2 × CH), 2.01-1.85 (m, 1 H, CH), 1.80-1.56 (m, 5 H, 5 protons of Cy), 1.35-0.95 (m, 11 H, 5 protons of Cy + 2 × CH₃); ¹³C NMR (CDCl₃, 75 MHz) δ 202.4, 175.6, 136.0, 128.5, 128.1, 98.2, 94.2, 66.0, 45.5, 37.1, 36.6, 33.04, 33.00, 26.1, 26.0, 18.4, 14.1; IR (neat, cm⁻¹) 2966, 2925, 2851, 1959, 1735, 1498, 1449, 1379, 1345, 1254, 1219, 1158; MS (EI) m/z (%) 312 (M⁺, 1.10), 165 (100), 91 (100), 69 (100); HRMS calcd for C₂₁H₂₈O₂ (M⁺): 312.2089, found: 312.2092.

The following compounds was prepared according the Typical Procedure 5

(2) $(R_a, 2S, 3S)$ -Benzyl 6-cyclohexyl-2,3-dimethylhexa-4,5-dienoate $(R_a, 2S, 3S)$ -5 (zxb-12-49)

The reaction of (2S,3R)-4m (165.2 mg, 0.50 mmol), THF (3 mL), and TBAF (0.5 mL, 1 M in THF, 0.5 mmol) afforded (2S,3R)-benzyl 2,3-dimethylpent-4-ynoate (2S,3R)-4o, which was used directly in the next step.

The reaction of ZnBr₂ (90.4 g, 0.40 mmol), (*S*)-diphenylprolinol (158.6 mg, 0.63 mmol), CyCHO (101.4 mg, 0.90 mmol)/toluene (1 mL), and (2*S*,3*R*)-benzyl 2,3-dimethylpent-4-ynoate (2*S*,3*R*)-4o/toluene (2 mL) afforded (R_a ,2*S*,3*S*)-5 (90.9 mg, 58%, 99% ee: HPLC conditions: AD-H column, rate = 0.2 mL/min, eluent: hexane/*i*-PrOH = 400:1, λ = 214 nm, t_R 33.5 min (major), 36.4 min (minor)): Liquid;

 $[\alpha]^{20}_{D} = -84.7 \ (c = 1.55, CHCl_3);$ ¹H NMR (300 MHz, CDCl₃) δ 7.40-7.30 (m, 5 H, ArH), 5.16-5.00 (m, 4 H, CH₂ + 2 × CH=), 2.62-2.30 (m, 2 H, 2 × CH), 2.02-1.85 (m, 1 H, CH), 1.80-1.56 (m, 5 H, 5 protons of Cy), 1.35-0.95 (m, 11 H, 5 protons of Cy + 2 × CH₃); ¹³C NMR (CDCl₃, 75 MHz) δ 202.4, 175.7, 136.1, 128.5, 128.1, 98.3, 94.3, 66.0, 45.5, 37.3, 36.8, 33.10, 33.08, 26.1, 26.0, 18.6, 14.5; IR (neat, cm⁻¹) 3033, 2925, 2851, 1959, 1735, 1498, 1451, 1379, 1345, 1256, 1158, 1071, 1028; MS (EI) m/z (%) 312 (M⁺, 4.07), 230 (100), ; HRMS calcd for C₂₁H₂₈O₂ (M⁺): 312.2089, found: 312.0290.

(3) $(R_a, 2R, 3R)$ -Benzyl 6-cyclohexyl-2,3-dimethylhexa-4,5-dienoate $(R_a, 2R, 3R)$ -5 (zxb-12-137)

The reaction of (2R,3S)-4m (164.3 mg, 0.50 mmol), THF (3 mL), and TBAF (0.5 mL, 1 M in THF, 0.5 mmol) afforded (2R,3S)-benzyl 2,3-dimethylpent-4-ynoate (2R,3S)-4o, which was used directly in the next step.

The reaction of ZnBr₂ (90.5 g, 0.40 mmol), (*S*)-diphenylprolinol (153.4 mg, 0.61 mmol), CyCHO (101.0 mg, 0.90 mmol)/toluene (2 mL), and (2*R*,3*S*)-benzyl 2,3-dimethylpent-4-ynoate (2*R*,3*S*)-4o/toluene (1 mL) afforded (S_a ,2*S*,3*S*)-5 (85.5 mg, 55%, 97% ee: HPLC conditions: OJ-H column, rate = 0.7 mL/min, eluent: hexane/*i*-PrOH = 400:1, λ = 214 nm, t_R 14.2 min (major), 15.8 min (minor)): Liquid;

[α]²⁰_D = -12.1 (c = 2.00, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.42-7.28 (m, 5 H, ArH), 5.16-5.09 (m, 3 H, CH₂ + CH=), 5.04 (qd, J = 6.6 and 3.0 Hz, 1 H, CH=), 2.58-2.35 (m, 2 H, 2 × CH), 2.01-1.85 (m, 1 H, CH), 1.80-1.57 (m, 5 H, 5 protons of Cy), 1.34-0.96 (m, 11 H, 5 protons of Cy + 2 × CH₃); ¹³C NMR (CDCl₃, 75 MHz) δ 202.5, 175.7, 136.1, 128.5, 128.1, 98.2, 94.2, 66.0, 45.5, 37.1, 36.6, 33.04, 33.00, 26.1, 26.0, 18.4, 14.1; IR (neat, cm⁻¹) 2966, 2925, 2851, 1960, 1734, 1498, 1449, 1380, 1345, 1256, 1219, 1158; MS (EI) m/z (%) 312 (M⁺, 1.09), 166 (100), 165 (100), 91 (100), 81 (100), 69 (100), 55 (100), 41 (100); HRMS calcd for C₂₁H₂₈O₂ (M⁺): 312.2089, found: 312.2087.

(4) $(S_a, 2R, 3R)$ -Benzyl 6-cyclohexyl-2,3-dimethylhexa-4,5-dienoate $(S_a, 2R, 3R)$ -5 (zxb-12-48)

The reaction of (2R,3S)-4m (164.6 mg, 0.50 mmol), THF (3 mL), and TBAF (0.5 mL, 1 M in THF, 0.5 mmol) afforded (2R,3S)-benzyl 2,3-dimethylpent-4-ynoate (2R,3S)-4o, which was used directly in the next step.

2) The reaction of ZnBr₂ (90.6 g, 0.40 mmol), (*R*)-diphenylprolinol (156.8 mg, 0.62 mmol), CyCHO (100.4 mg, 0.90 mmol)/toluene (2 mL), and (2*R*,3*S*)-benzyl 2,3-dimethylpent-4-ynoate (2*R*,3*S*)-**4o**/toluene (1 mL) afforded (S_a ,2*R*,3*R*)-**5** (89.3 mg, 57%, 98% ee: HPLC conditions: AD-H column, rate = 0.2 mL/min, eluent:

hexane/*i*-PrOH = 400:1, λ = 214 nm, t_R 31.4 min (minor), 34.0 min (major)): Liquid; [α]²⁰_D = +82.5 (*c* = 1.14, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.42-7.30 (m, 5 H, ArH), 5.15-5.02 (m, 4 H, CH₂ + 2 × CH=), 2.60-2.34 (m, 2 H, 2 × CH), 2.02-1.85 (m, 1 H, CH), 1.80-1.55 (m, 5 H, 5 protons of Cy), 1.35-0.95 (m, 11 H, 5 protons of Cy + 2 × CH₃). ¹³C NMR (CDCl₃, 75 MHz) δ 202.4, 175.7, 136.1, 128.5, 128.1, 98.3, 94.3, 66.0, 45.5, 37.3, 36.8, 33.10, 33.08, 26.1, 26.0, 18.6, 14.5; IR (neat, cm⁻¹) 3033, 2925, 2851, 1959, 1735, 1498, 1451, 1379, 1346, 1256, 1158, 1071, 1028; MS (EI) m/z (%) 312 (M⁺, 4.91), 165 (100), 91 (100), 69 (100), 55 (100); HRMS calcd for C₂₁H₂₈O₂ (M⁺): 312.2089, found: 312.2083.

3. Desilylation and Pd-catalyzed Sonogashira coupling reaction of (2S,3R)-4m

(2*S*,3*R*)-Benzyl 2,3-dimethyl-5-phenylpent-4-ynoate (2*S*,3*R*)-6 (zxb-12-8)

To a solution of (2S,3R)-4m (66.4 mg, 0.20 mmol) in THF (1.5 mL) was added TBAF (0.2 mL, 1 M in THF, 0.2 mmol). After stirring for 2 h at rt, the result solution was quenched with water (5 mL), extracted with ether (15 mL × 3), washed with brine, dried over Na₂SO₄, filtrated, and concentrated. The residue was purified by flash chromatography on silica gel (eluent: petroleum ether: ethyl ether = 40 : 1) to afford (2S,3R)-benzyl 2,3-dimethylpent-4-ynoate (2S,3R)-4o, which was used directly in the next step.

To a dry Schlenk tube were added Pd(PPh₃)₂Cl₂ (2.9 mg, 0.004 mmol, 2 mol %), CuI (1.2 mg, 0.006 mmol, 3 mol %), (2S,3R)-benzyl 2,3-dimethylpent-4-ynoate (2S,3R)-40 prepared above, Et₃N (1 mL), PhI (59.8 mg, 0.29 mmol), and DMSO (1 mL). The resulting mixture was then heated at 40-45 °C. After complete conversion of the starting material as monitored by TLC, the reaction mixture was quenched with water (5 mL) and extracted with Et₂O (3×15 mL). The combined organic layer was washed with brine (twice) and then dried over anhydrous Na₂SO₄. Filtration, evaporation, and chromatography on silica gel (eluent: petroleum ether : ethyl ether = 40 : 1) afforded the product $(2S_3R)$ -6 (51.8 mg, 88%, 98% ee: HPLC conditions: OJ-H column, rate = 1 mL/min, eluent: hexane/*i*-PrOH = 99:1, λ = 254 nm, t_R 30.6 min (major), 35.3 min (minor)): Liquid; $[\alpha]^{20}_{D} = -28.4$ (c = 1.44, CHCl₃); ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta 7.41-7.30 \text{ (m, 7 H, ArH)}, 7.30-7.24 \text{ (m, 3 H, ArH)}, 5.19 \text{ (d, } J =$ 12.6 Hz, 1 H, CH₂), 5.14 (d, J = 12.3 Hz, 1 H, CH₂), 3.08 (pentet, J = 7.1 Hz, 1 H, CH), 2.56 (pentet, J = 7.1 Hz, 1 H, CH), 1.37 (d, J = 6.9 Hz, 3 H, CH₃), 1.26 (d, J =6.9 Hz, 3 H, CH₃); ¹³C NMR (CDCl₃, 75 MHz) δ 174.8, 135.9, 131.6, 128.5, 128.14, 128.08, 127.7, 123.5, 91.2, 82.5, 66.3, 45.3, 30.0, 19.4, 14.8; IR (neat, cm⁻¹) 3064, 3033, 2977, 2935, 2877, 2224, 1735, 1598, 1490, 1455, 1382, 1345, 1261, 1168, 1080, 1028; MS (EI) m/z (%) 292 (M^+ , 1.27), 91 (100); HRMS calcd for $C_{20}H_{20}O_2$ (M^+): 292.1463, found: 292.1465.

S36

Data File D:\HPCHEM\1\DATA\ZXB\ZXB00501.D

Sample Name: zxb-11-70

OJ-H, n-Hexane:i-PrOH = 100/0, 0.22 mL/min, 214 nm

Injection Date : 11/10/2012 1:05:13 PM Sample Name Acq. Operator Acq. Method Last changed : zxb-11-70 : zxb Location : -: ZXD : D:\HPCHEM\1\METHODS\XFX_LC.M : 11/10/2012 12:45:02 PM by zxb TMS Analysis Method : D:\HPCHEM\1\METHODS\XFX LC.M (modified after loading) Analysis Method : D:\HPCHEM\1\METHODS\XFX LC.M Last changed : 11/10/2012 1:51:30 PM by zxb (modified after loading) WWD1A Wavelength=214 nm (ZXBZXB00501.D) BnOOC Norm. 157482 1400 4 018 1200 1000 800 600 400 6.001 200 553 0 10 15 20 25 30 40 Area Percent Report ______ Sorted By Signal : Multiplier 1.0000 : Dilution 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=214 nm
 Width
 Area
 Height
 Area

 [min]
 mAU
 *s
 %

 ----- ----- ----- -----

 2.5526
 516.90698
 3.37497
 0.3272

 2.2592
 1.57482e5
 1161.78137
 99.6728
 Peak RetTime Type Width [min] ----|------1 1 33.553 MM 2 36.018 MM Totals : 1.57999e5 1165.15635 Results obtained with enhanced integrator! _____ _____ *** End of Report ***

PDF ????? "pdfFactory Pro" ?????? www.fineprint.com.cn

Page 1 of 1

Data File D:\HPCHEM\1\DATA\ZXB\ZXB00500.D

Sample Name: zxb-11-70

OJ-H, n-Hexane:i-PrOH = 100/0, 0.22 mL/min, 214 nm

Injection Date : 11/10/2012 12:23:58 PM Sample Name Acq. Operator Acq. Method Last changed : zxb-11-70 : zxb : D:\HPCHEM\1\METHODS\XFX_LC.M : 11/10/2012 12:45:02 PM by zxb Location : -TMS-(±) BnOOC

 Last changed
 : 11/10/2012 12:40:002 PM by 2xth

 (modified after loading)

 Analysis Method
 : D:\HPCHEM\1\METHODS\XFX_LC.M

 Last changed
 : 11/10/2012 1:08:38 PM by 2xth

 (modified after loading)

 WWD1 A, Wavelength=268 nm (ZXBZXB00500.D)

Norm. A3953.4 800 600 400 200 0 35 20 25 30 10 15 Area Percent Report Sorted By Signal : 1.0000 Multiplier : Dilution Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=268 nm Peak RetTime Type Width Height Area [mAU] -1 1 30.777 MM 2 34.548 VB 1.0854 4.39334e4 1.2043 4.35381e4 674.60059 50.2260 542.44604 49.7740 8.74714e4 1217.04663 Totals : Results obtained with enhanced integrator! *** End of Report ***

PDF ???? "pdfFactory Pro" ????? www.fineprint.com.cn

Page 1 of 1

Data File D:\HPCHEM\1\DATA\ZXB\ZXB10119.D

Sample Name: ZXB-10-115'

OJ-H, n-Hexane:i-PrOH=99.5/0.5, 0.5 ml/min, 215 nm

Injection Date : 6/1/2012 4:31:21 AM Sample Name : ZXB-10-115' Location : -Sample Name : ZXB-10-115' Acq. Operator : zxb Acq. Method : D:\HPCHEM\1\METHODS\XFX_LC.M Last changed : 6/1/2012 4:08:01 AM by zxb (modified after loading) Analysis Method : D:\HPCHEM\1\METHODS\XFX_LC.M Last changed : 1/1/2004 12:43:54 AM by DJD (modified after loading) WD1 A, Wavelength=215 nm (ZXB/ZXB10119.D) Ph TMS BnOOC Norm. 800 24236.4 600 400 200 017 0 14 10 16 mir Area Percent Report Sorted By Signal Multiplier : 1.0000 Dilution 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=215 nm
 Peak RetTime Type
 Width
 Area
 Height
 Area

 #
 [min]
 mAU
 *s
 [mAU]
 %

 ---- ----- ----- ----- ----- -----

 1
 11.017
 MM
 0.4883
 247.11264
 8.43362
 1.0093

 2
 12.450
 MM
 0.8406
 2.42364e4
 480.51205
 98.9907
 Totals : 2.44835e4 488.94568 Results obtained with enhanced integrator! _____ *** End of Report ***

PDF ???? "pdfFactory Pro" ?????? www.fineprint.com.cn

Page 1 of 1

Data File D:\HPCHEM\1\DATA\ZXB\ZXB10120.D

Sample Name: ZXB-10-116''

OJ-H, n-Hexane:i-PrOH=99.5/0.5, 0.5 ml/min, 215 nm

______ ______ _______ Injection Date : 6/1/2012 4:52:41 AM Sample Name : ZXB-10-116'' Sample Name Acq. Operator Acq. Method Last changed Location : -Sample Name : ZXB-10-116'' Acq. Operator : zxb Acq. Method : D:\HPCHEM\1\METHODS\XFX_LC.M Last changed : 6/1/2012 4:08:01 AM by zxb (modified after loading) Analysis Method : D:\HPCHEM\1\METHODS\XFX_LC.M Last changed : 1/1/2004 12:46:41 AM by DJD (modified after loading) WWD1 A, Wavelength=215 nm (ZXB\ZXB10120.D) TMS (±) BnOOC Norm. 1750 1500 1250 1000 * 15193.4 750 154127 500 2.321 250 0 10 Area Percent Report Sorted By Signal : 1.0000 Multiplier : Dilution Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=215 nm
 Width
 Area
 Height
 Area

 [min]
 mAU
 *s
 [mAU
 %

 0.5356
 1.51934e4
 472.75558
 49.641

 0.8074
 1.54127e4
 318.14163
 50.358
 Peak RetTime Type Width # [min] - 1 1 10.835 MM 2 12.321 MM 472.75558 49.6417 318.14163 50.3583 Totals : 3.06061e4 790.89722 Results obtained with enhanced integrator! *** End of Report ***

PDF ???? "pdfFactory Pro" ????? www.fineprint.com.cn

Page 1 of 1

. .

Data File D:\HPCHEM\1\DATA\ZXB\ZXB00403.D

OJ-H, n-Hexane:i-PrOH = 99/1 , 0.4 ml/min, 254nm Injection Date : 9/12/2012 3:06:22 AM Sample Name : zxb-10-196 Acg. Operator : zxb Location : -PMP Acq. Operator Acq. Method Last changed Acq. Operator : zxb Acq. Method : D:\HPCHEM\1\METHODS\XFX_LC.M Last changed : 9/12/2012 3:05:01 AM by zxb (modified after loading) Analysis Method : D:\HPCHEM\1\METHODS\XFX_LC.M Last changed : 9/12/2012 7:04:47 AM by zxb (modified after loading) WD1A, Wavelength=254 nm (ZXBVXB00403.D) TMS-= BnOOC . 6382.8⁶ mAU 3:600 40 30 20 10 0 40 10 20 30 Area Percent Report Sorted By Signal : Multiplier Dilution 1.0000 1.0000 : Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm
 Peak RetTime Type Width
 Area
 Height
 Area

 # [min]
 [min]
 mAU
 *s
 [mAU]
 %

 ----|-----|

 -----|
 -----|
 -----|

 1
 29.110
 MM
 1.1651
 95.18965
 1.36171
 1.469
 1 29.110 MM 1.1651 95.18965 1.36171 1.4094 2 33.600 MM 1.9192 6382.96045 55.43168 98.5306 6478.15010 56.79339 Totals : Results obtained with enhanced integrator! *** End of Report ***

PDF ????? "pdfFactory Pro" ??????? www.fineprint.com.cn

Page 1 of 1

Sample Name: zxb-10-196

Data File D:\HPCHEM\1\DATA\ZXB\ZXB00402.D

Sample Name: zxb-10-197

OJ-H, n-Hexane:i-PrOH = 99/1 , 0.4 ml/min, 254nm

PDF ???? "pdfFactory Pro" ?????? www.fineprint.com.cn

总计

zxb-11-108-oj-h-100-0-0.15-214

.....

335935. 925

30988755.094

100.0000

实验时间: 2012-11-09,16:54:37 请图文件:D:\zhuguangjiong\zxb\20121109\zxb-11-108-oj-h-100-0-0.15-214.org

PDF 文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.cn

2

总计

zxb-11-109-oj-h-100-0-0.15-214

290011.938

650858.781

33431080.000

66700634.000

50. 1211

100.0000

55.805

实验时间: 2012-11-09, 15:50:21 报告时间: 2012-11-09, 16:56:01 请图文件:D:\zhuguangjiong\zxb\20121109\zxb-11-109-oj-h-100-0-0. 15-214. org

PDF 文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.cn

Data File D:\HPCHEM\1\DATA\ZXB\ZXB00478.D

Sample Name: zxb-11-105

OJ-H, n-Hexane:i-PrOH = 100/0, 0.2 ml/min, 254 nm

Injection Date	: 10/31/2	012 11:37:24	4 AM			
Sample Name	: zxb-11-	-105		Locatio	on: -	11.
Acq. Operator	: zxb					TMS-
Acq. Method	: D:\HPCH	IEM\1\METHOD	S\XFX_LC.M)····C3H7-/
Last changed	: 10/31/2	2012 8:26:19	AM by zxb			BnOOC
	(modifi	ed after loa	ading)			_
Analysis Method	: D:\HPCH	IEM\1\METHOD	S\XFX_LC.M			
Last changed	: 10/31/2	012 10:00:1.	3 AM DY ZXD			
	(modili)	ed after 10	ading)			
VWDIA, W	avelengui-204 ni		,			
Norm.						
35						
30-						
25 -						
1 1						
20-						~
						5 50°
15-						5
103						$\langle \rangle$
1 .1						a (96)
5						6
						Asse
0	.				A	
1 1						
-5-						
-10 -10				1		
0	5	10	15	20	25 3	0 35 mi
						5 (
		Area Percen	t Report			

Sorted By		Signal				
Dilution		1.0000				
Use Multiplier	6 Dilutio	Factor wit	h ISTDe			
USe Mulcipilei	a DIIUCIO	I Factor wit	10103			
Signal 1: VWD1	A, Wavele	ngth=254 nm				
Peak RetTime Ty	ype Width	Area	Height	Area		
# [min]	[min]	mAU *s	[mAU]	8		
		-			I	
1 32.972 M	1 1.223	3 24.85612	3.38640e-1	1.6214		
2 35.587 M	1.981	2 1508.18677	12.68766	98.3786		
		1522 04200	12 02620			
iotais :		1000.04289	13.02030			
Results obtain	ned with e	nhanced inte	grator!			
		*** End of	Benort ***			

PDF ????? "pdfFactory Pro" ??????? www.fineprint.com.cn

Data File D:\HPCHEM\1\DATA\ZXB\ZXB00475.D Sample Name: zxb-11-105+106 OJ-H, n-Hexane:i-PrOH = 100/0, 0.2 ml/min, 254 nm ---- TMS Injection Date : 10/31/2012 9:16:23 AM Sample Name : zxb-11-105+106 Location : BnOOC Acq. Operator Acq. Method : zxb : D:\HPCHEM\1\METHODS\XFX LC.M Acq. Method : D'HFCHEMINEROS (MFA_D.:M Last changed : 10/31/2012 8:25:19 AM by zxb (modified after loading) Analysis Method : D:HPCHEMI\\MBTHODS\XFX_LC.M Last changed : 10/31/2012 10:00:13 AM by zxb (modified after loading) WWD1A, Wavelength=254 nm (ZXB/ZXB00475.D) TMS BnOOO Norm. 35 -30 -25 -1462.36 20-15-10-5-0 -5--10 10 15 20 25 30 35 Area Percent Report Sorted By Signal : 1.0000 Multiplier Dilution : Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm
 Width
 Area
 Height
 Area

 [min]
 mAU
 *s
 [mAU]
 %

 ----- ----- ----- ----- -----

 1.4061
 1462.35571
 17.33329
 48.7713

 1.7648
 1536.03662
 14.50645
 51.2287
 Peak RetTime Type Width # 1 31.504 MM 2 34.811 MM 2998.39233 31.83974 Totals : Results obtained with enhanced integrator!

*** End of Report ***

PDF ???? "pdfFactory Pro" ?????? www.fineprint.com.cn

Data File D:\HPCHEM\1\DATA\ZXB\ZXB00479.D

Sample Name: zxb-11-106

OJ-H, n-Hexane:i-PrOH = 100/0, 0.2 ml/min, 254 nm

PDF ???? "pdfFactory Pro" ?????? www.fineprint.com.cn

PDF ????? "pdfFactory Pro" ??????? www.fineprint.com.cn

Data File D:\HPCHEM\1\DATA\ZXB\ZXB00494.D

Sample Name: zxb-11-116

OJ-H, n-Hexane:i-PrOH = 100/0, 0.15 mL/min, 214 nm

Toda and the Balls						=	
injection Date	: 11/9/20	12 10:04:57	PM				
Sample Name	: zxb-11-	116		Location	: -		
Acq. Operator	: zxb					5	
Acq. Method	: D:\HPCH	EM/1/METHODS	S\XFX_LC.M			TDS	
Last changed	: 11/9/20	12 10:35:33	PM by zxb			1B3	
	(modifie	ed after loa	ading)			R-OOC	
Analysis Method	: D: \HPCH	EM \1 \METHODS	XFX_LC.M			BIIOGO	
Last changed	(modifi	12 11:00:17	PM by zxb				
WD1 A Wave	elenath=214 nm	(7XB\7XB00494 D)	aariig)				
Norm 7	olongui-214 min	(210 21000-04.0)					
1750 -							
1500							
1							
1							
1250 -							
1000-							3
1000							
						13	
750 -						18.6	
						$\hat{\land}$	
500							
500 -							
1							
250							
1						6	
						45.7	
o						45.7	
o 1						45.7	<u> </u>
0	10	20		30	40		min
0	10	20	· · · ·	30	40		min
0	10	20		30	40		min
0	10	20 Area Percent	Report	30	40		min
0	10	20 Area Percent	Report	30	40	159 	min
Sorted By		20 Area Percent	Report	30	40		min
o o Sorted By Multiplier	10	20 Area Percent Signal 1.0000	Report	30	40	50 	min
o Sorted By Multiplier Dilution	10 	20 Area Percent Signal 1.0000 1.0000	Report	30	40		min
Sorted By Multiplier Dilution Use Multiplier &	10 : : Dilution	20 Area Percent 1.0000 1.0000 Factor with	Report	30	40	<u>19</u>	min
Sorted By Multiplier Dilution Use Multiplier &	10 : : Dilution	20 Area Percent Signal 1.0000 1.0000 Factor with	Report	30	40		min
0 Sorted By Multiplier Dilution Use Multiplier &	10 : : Dilution	Area Percent Signal 1.0000 1.0000 Factor with	Report	30	40	50 	min
Sorted By Multiplier Dilution Use Multiplier & Signal 1: VWD1 A	10 : : Dilution , Wavelen	20 Area Percent Signal 1.0000 1.0000 Factor with gth=214 nm	Report	30	40		min
Sorted By Multiplier Dilution Use Multiplier & Signal 1: VWD1 A	10 : : Dilution , Wavelen	20 Area Percent 1.0000 1.0000 Factor with gth=214 nm	n ISTDs	30	40	59 50 50	min
Sorted By Multiplier Dilution Use Multiplier & Signal 1: VWDI A Peak RetTime Typ	10 : : Dilution , Wavelen e Width	20 Area Percent Signal 1.0000 1.0000 Factor with gth=214 nm Area	Report I ISTDs	30 Area	40		min
O Sorted By Multiplier Dilution Use Multiplier & Signal 1: VWD1 A Peak RetTime Typ # [min]	10 : : Dilution , Wavelen e Width [min]	20 Area Percent 1.0000 1.0000 Factor with gth=214 nm Area mAU *s	Report ISTDs Height [mAU]	30 Area	40		min
Sorted By Multiplier Dilution Use Multiplier & Signal 1: VWD1 A Peak RetTime Typ # [min]	10 : : Dilution , Wavelen e Width [min] -	20 Area Percent 1.0000 1.0000 Factor with gth=214 nm Area mAU *s 	Report ISTDs Height [mAU]	Area 8	40		min
Sorted By Multiplier Dilution Use Multiplier & Signal 1: VWD1 A Peak RetTime Typ # [min] 	10 : : Dilution , Wavelen (min) - 1.0284 3.0328	20 Area Percent 1.0000 1.0000 Factor with gth=214 nm Area mAU *s 467.82681 1.46282e5	Height [mAU] 5.39899 669.41394	Area % 	40	50 50	min
Sorted By Multiplier Dibution Use Multiplier & Signal 1: VWD1 A Peak RetTime Typ # [min] 	10 : : Dilution , Wavelen e Width [min] - 1.0284 3.0328	20 Area Percent 1.0000 1.0000 Factor with gth=214 nm Area mAU *s 	Height [mAU] 5.39899 669.41394	Area % 0.3188 99.6812	40		min
Sorted By Multiplier Dilution Use Multiplier & Signal 1: VWD1 A Peak RetTime Typ # [min] 	10 : : Dilution , Wavelen e Width [min] - 1.0284 3.0328	20 Area Percent 1.0000 1.0000 Factor with gth=214 nm Area mAU *s 467.82681 1.46282e5 1.46750e5	Height [mAU] 5.39899 669.41394	Area % 0.3188 99.6812	40		min
Sorted By Multiplier Dilution Use Multiplier & Signal 1: VWD1 A Peak RetTime Type # [min] 	10 : : Dilution , Wavelen e Width [min] -	20 Area Percent 1.0000 1.0000 Factor with gth=214 nm Area mAU *s 467.82681 1.46282e5 1.46750e5	E Report Height [mAU] 5.39899 669.41394 674.81293	Area 8 0.3188 99.6812	40		min
o Sorted By Multiplier Dilution Use Multiplier & Signal 1: VWD1 A Peak RetTime Typ # [min] 	10 : : Dilution , Wavelen e Width [min] - 1.0284 3.0328 d with en	20 Area Percent 1.0000 1.0000 Factor with gth=214 nm Area mAU *s 467.82681 1.46282e5 1.46750e5 hanced integ	Height [mAU] 5.39899 669.41394 674.81293 grator!	Area % 0.3188 99.6812	40		min
o Sorted By Multiplier Dibution Use Multiplier & Signal 1: VWD1 A Peak RetTime Typ # [min] 1 45.787 PV 2 48.613 VB Totals : Results obtaine	10 : : Dilution , Wavelen e Width [min] - 1.0284 3.0328 d with en	20 Area Percent Signal 1.0000 1.0000 Factor with gth=214 nm Area mAU *s 467.82681 1.46282e5 1.46750e5 hanced integ	Height [mAU] 5.39899 669.41394 674.81293 grator!	Area % 0.3188 99.6812	40		min

PDF ????? "pdfFactory Pro" ??????? www.fineprint.com.cn

CU-H, n-Hexane:i-PrOH = 100/0, 0.15 mL/min, 214 nm Injection Date : 11/9/2012 0:07:54 PM Location : - And, Wethod : D: NPCHEM:NIMETHODS:XEX, LC.M Last changed : 11/9/2012 0:01:07 M by zab (modified after loading) W014 Wwweeggm=214 nm (ZHZXH00492 D) Nom 600 600 600 600 600 600 600 60	a File D	:\HPCHEM\1	DATA\ZXB\	ZXB00492.1	D			Sample	Name: zxk	-11-115+11
Area Percent Report Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution Factor with ISTDS Signal 1: VND1 A, Wavelengt=214 mm Peak RetTime Type Width Area Height Area * [min] [min] mAU *s [mAU] * Peak RetTime Type Width Area Height Area * [min] [min] mAU *s [mAU] * Peak RetTime Type Width Area Height Area * [min] [min] mAU *s [mAU] * Peak RetTime Type Width Area Height Area * [min] [min] mAU *s [mAU] * 1 144.622 BV 2.1392 4.1226204 285.62735 50.4463 2 50.660 VB 2.19904 4.0464 4.187.39545 49.5537 Totals : 8.1722964 473.02280 Results obtained with enhanced integrator! 	OJ-H, n	-Hexane:i-D	PrOH = 100	/0, 0.15 r	nL/min, 214	nm			TRS	
WD1A Wavelength-214 nm (ZKBZZB00492 D) Nom 400 400 6000	Injectio Sample I Acq. Op Acq. Me Last cha Analysia Last cha	on Date : Name : erator : thod : anged : s Method : anged :	11/9/2012 zxb-11-11 zxb D:\HPCHEM 11/9/2012 (modified D:\HPCHEM 11/9/2012 (modified	8:07:54 1 5+116 (1\METHODS 8:04:07 1 after loa (1\METHODS 9:12:08 1 2fter loa	PM S\XFX_LC.M PM by zxb ading) S\XFX_LC.M PM by zxb	Location	: -		Bn TBS— Bn	
Nom. 800 600 600 400 9 200 9 0 10 200 30 0 10 200 30 0 10 200 30 0 10 200 30 0 10 200 30 0 10 200 30 0 10 200 30 0 10 200 30 40 50 minitian 10 300 40 50 minitian Sorted By 1 300 1 Wiltiplier 1 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 25 1 25 2		VWD1 A, Wavele	angth=214 nm (Z	XB\ZXB00492.D)					
600 400 200 200 200 200 200 200 2	Norm. - - 800 – -									
400 0	600									
200 0 10 20 30 40 50 m Area Percent Report Area Percent Report Multiplier : 1.0000 Dilution : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=214 nm Peak RetTime Type Width Area Height Area # [min] [min] mAU *s [mAU] & 	400 -							→ 44.622	060	
0 10 20 30 40 50 mi Area Percent Report Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=214 nm Peak RetTime Type Width Area Height Area # [min] [min] mAU * 1 44.622 BV 2.1382 4.12262e4 285.62735 50.4463 2 2 50.060 VB 2.9900 4.04967e4 187.39545 49.5537 Fotals : 8.17229e4 Results obtained with enhanced integrator! **** End of Report ***	200 -								201C	
0 10 20 30 40 50 m Area Percent Report Area Percent Report Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=214 nm Peak RetTime Type Width Area # [min]	0-)	Y	
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=214 nm Peak RetTime Type Width Area # [min] [min] [mAU 1 44.622 BV 2 50.060 VB 2 50.060 VB 2 50.060 VB 2 8.17229e4 473.02280 Results obtained with enhanced integrator! **** End of Report ***	(0	10	20	· · · · · · · · · · · · · · · · · · ·	30	40		50	mir
Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=214 nm Peak RetTime Type Width Area # [min] [min] [mAU] * * * [mAU] * * * * * * * * * * * * * *			 Ar	ea Percent	Report					
Signal 1: VWD1 A, Wavelength=214 nm Peak RetTime Type Width Area Height Area # [min] [min] mAU *s [mAU] %	Sorted 1 Multipl Dilution Use Mul	By ier n tiplier & I	: : Dilution F	Signal 1.0000 1.0000 actor with	n ISTDs					
Peak RetTime Type Width Area Height Area # [min] [min] mAU %	Signal	1: VWD1 A,	Wavelengt	h=214 nm						
1 44.622 BV 2.1382 4.12262e4 285.62735 50.4463 2 50.060 VB 2.9900 4.04967e4 187.39545 49.5537 Totals : 8.17229e4 473.02280 Results obtained with enhanced integrator! *** End of Report ***	Peak Re # [1	tTime Type min]	Width [min] m	Area AU *s	Height [mAU]	Area %				
Totals : 8.17229e4 473.02280 Results obtained with enhanced integrator! *** End of Report ***	1 4 2 5	4.622 BV 0.060 VB	2.1382 4 2.9900 4	.12262e4 .04967e4	285.62735 187.39545	50.4463 49.5537				
Results obtained with enhanced integrator! *** End of Report ***	Totals	:	8	.17229e4	473.02280					
*** End of Report ***	Result	s obtained	with enha	nced integ	grator!					
			*	** End of	Report ***					

PDF ????? pdfFactory Pro" ??????? www.fineprint.com.cn

Data File D:\HPCHEM\1\DATA\ZXB\ZXB00496.D

Sample Name: zxb-11-115

OJ-H, n-Hexane:i-PrOH = 100/0, 0.15 mL/min, 214 nm

Injection Date : 11/9/2012 12:50:22 AM Sample Name : zxb-11-115 Location : - Acq. Operator : zxb Last changed : 11/9/2012 11:46:15 PM by zxb (modified after loading) Analysis Method : D: \HPCHEMI.\METHODSXIXT LC.M Last changed : 11/1/2012 12:09:43 AM By zxb (modified after loading) WOAA Wavelengh=254 nm (ZXBXXB0466.D) WOAA Wavelengh=254 nm (ZXBXXB0466.D) Acq. Method : D: \HPCHEMI.LOCATION (ZXBXXB0466.	*=================						
Sample Name : : : : : : : : : : : : : : : : : : :	Injection Date	: 11/9/	2012 12:50:2	2 дм		*******	
Acq. Operator : zxb Acq. Operator : zxb (Incolified after loading) Analysis Method : D:\MPCHEN\I\METHODS\XFX LC.M Last changed :: 11/9/2012 11:46:15 PM by zxb (Incolified after loading) WOIA.Wavdergh=254 mm (ZKBZ/BOOKSED) WOIA.Wavdergh=254 mm (ZKBZ/BOOKSED) Area Percent Report Area Percent Report Area Percent Report Sorted By : Signal Multipler : 1.0000 Dilution :: 1.000	Sample Name	: zxb-1	1-115		Location .		
Acq. Method : D:\MPCHEN\I\METHODS\KFX LC.M (modified after loading) Analysis Method : D:\MPCHEN\I\METHODS\KFX LC.M Last changed : D:\MPCHEN\I\METHODS\KFX LC.M Last changed : D:\MPCHEN\I\METHODS\KFX LC.M Last changed : D:\MPCHEN\I\METHODS\KFX LC.M (modified after loading) WU1A.Wavdength=254 nm (ZKBZ/800496.D) WOTA.Wavdength=254 nm (ZKBZ/800496.D) Area Percent Report Area Percent Report Area Percent Report Sorted By : Signal Multiplier : D:0000 Dilution : D:0000 Use Multiplier 4 Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area Height Area * [min] maN *s [mAN] 1 2 48.660 MM 1.1778 320.95422 4.551377 1.99.1389 2 48.660 MM 2.4291 3.65519e4 253.53271 99.1389 2 48.660 MM 1.1778 320.95422 4.55177 0.6611 Totals : 3.72728e4 258.07448 Results obtained with enhanced integrator! *** End of Report ***	Acq. Operator	: zxb			bocación .		
Last changed : 11/9/2012 11:46:15 PM by 2xb (modified after loading) W01A, Wavdergh=254 nm (ZABUZBOO466.0) 0 0 0 0 0 0 0 0 0 0 0 0 0	Acq. Method	: D:\HPC	CHEM\1\METHO	DS\XFX_LC.M			TBS-
Analysis Method : D://HPCHRM1/NEPHOS/KFX LC.M Last changed : D://HPCHRM1/NEPHOS/KFX LC.M Last changed : D://HPCHRM1/NEPHOS/KFX LC.M (modified after loading) WUD1A,Wawdeng/P=254 nm (ZABUZ/800496.D) Nom 800 400 400 400 400 400 400 400 400 400	Last changed	: 11/9/2	2012 11:46:1	5 PM by zxb			7
WD1A Waxdergh-254 mm (ZGUZROGGG D) WD1A Waxdergh-254 mm (ZGUZROGGG D) WD1A Waxdergh-254 mm (ZGUZROGGG D) WD1A Waxdergh-254 mm (ZGUZROGGG D) According to the state of the	Analysis Mothed	(modif	fied after 1	oading)			BnOOC
WD1A Waxdergh-254 nm (2080/2800096 D) Nom 800 600 600 600 600 600 600 600	Last changed	: D:\HPC	CHEM \1 \METHO	DS\XFX_LC.M			
W01A Waxdength-254 nm (2X0220000660) Norm 800 600 600 600 600 600 600 600	have changed	. 11/10/	Fied after h	43 AM by zxb			
Norm 800 600 600 400 9 200 9 0 10 20 30 0 10 20 30 40 50 mg Sorted By 1 1.0000 Signal Area Percent Report Sorted By 1 1.0000 Dilution 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area Height Area # [min] mAU 1 43.332 MM 2 460.600 MM 1.1778 320.532271 2 40.600 MM 1.1778 320.53221 2 40.600 MM 1.1778 320.532271 9.1389 2 40.600 MM 1.1778 320.532271 2 40.600 MM 1.1778 320.532271 2 3.00 1.1778 <t< td=""><td>WD1 A, Wa</td><td>velength=254</td><td>nm (ZXB\ZXB00496</td><td>D)</td><td></td><td></td><td></td></t<>	WD1 A, Wa	velength=254	nm (ZXB\ZXB00496	D)			
800- 600- 400- 200- 0 10 20 0 10 20 0 40 0 40 0 40 0 40 0 40 0 40 50 40 50 40 50 40 50 50 40 50	Norm.		,	-,			
800- 600- 400- 200- 0 200- 0 200- 0 200- 0 200- 0 200- 0 200- 0 200- 0 200- 0 200- 0 200- 0 200- 0 200-							
800- 600-							
800-	1						
600 0	800 -						
600 0							
600 0	1						
600- 400- 200- 0							
400 0	600 -						
400 200 	1 1						
400 400 400 400 400 400 400 400 50 mit							
400 400 9 10 20 30 40 50 mid 9 10 1							
200 200 0 10 20 30 40 50 min Area Percent Report Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area Height Area # (min) (min) mAU *s (mAU) 1 43.392 MM 2.4291 3.69519e4 253.53271 99.1389 2 48.660 MM 1.1778 320.95422 4.54177 0.8611 Notals : 3.72728e4 258.07448 Results obtained with enhanced integrator! *** End of Report ***	400 -						0
200 10 20 30 40 50 min Area Percent Report Area Percent Report Multiplier : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area Height Area # [min] [min] mAU *s [mAU] 1 43.392 MM 2 48.660 MM 1.1778 320.95422 4.54177 0.8611 Fotals : 3.72728e4 *** End of Report ***	-						~
200 0	-						
200- 10 20 30 40 50 mit Area Percent Report Area Percent Report Sorted By :: Signal Multiplier :: 1.0000 Dilution :: 1.0000 Dilution :: 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area Height Area # [min]							Abre
Area Percent Report Area Percent Report Sorted By : Signal Multiplier Sorted By : Signal Nultiplier Sorted By : 1.0000 Use Multiplier : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area # [min] 1 43.392 MM 2 48.660 MM 1.1778 320.95422 4.54177 0.8611 Notals : 3.72728e4 258.07448 Results obtained with enhanced integrator! *** End of Report ***	200 -						\wedge
Area Percent Report Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area # [min] 1 43.392 MM 2.4291 3.69519e4 2.48.660 MM 1.1778 320.95422 4.54177 O.8611 Fotals : 3.72728e4 X.72728e4 258.07448 Results obtained with enhanced integrator! *** End of Report ***	-						
Area Percent Report Area Percent Report Multiplier : 1,0000 Dilution : 1,0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area # [min] 1 43.392 MM 2 48.660 MM 1.1778 320.95422 4.54177 0.8611 Potals : 3.72728e4 258.07448 Results obtained with enhanced integrator! *** End of Report ***							/ /
0 10 20 30 40 50 min Area Percent Report Area Percent Report Multiplier : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area Height Area # (min) (min) mAU *s (mAU) 1 43.392 MM 2.4291 3.69519e4 2 48.660 MM 1.1778 320.95422 4.54177 0.8611 Fortals : 3.72728e4 258.07448 *** End of Report ***	-						
0 10 20 30 40 50 min Area Percent Report Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 10000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area Height Area # [min] [min] mAU *s [mAU] 1 43.392 MM 2.4291 3.69519e4 253.53271 99.1389 2 48.660 MM 1.1778 320.95422 4.54177 0.8611 Fotals : 3.72728e4 *** End of Report ***	0	Λ					Street.
0 10 20 30 40 50 min Area Percent Report Area Percent Report Sorted By : Signal Multiplier : 1.0000 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area Height Area # [min] [mAU] 1 43.392 MM 2 48.660 MM 1.1778 320.95422 2 48.660 MM 1.1778 320.95422 4.54177 0.8611 Fotals : 3.72728e4 *** End of Report ***	<u>+</u>			·····			
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area Height Area # [min] [min] mAU *s [mAU] % 1 43.392 MM 2.4291 3.69519e4 253.53271 99.1389 2 48.660 MM 1.1778 320.95422 4.54177 0.8611 Totals : 3.72728e4 258.07448 Results obtained with enhanced integrator! *** End of Report ***	00	10		20	30		40 50 min
Area Percent Report Area Percent Report Sorted By i Signal Multiplier i 1.0000 Dilution i 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area Height Area # [min] [min] mAU *s [mAU] % I 43.392 MM 2.4291 3.69519e4 253.53271 99.1389 2 48.660 MM 1.1778 320.95422 4.54177 0.8611 Totals: Structure							
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area Height Area # [min] mAU *s [mAU] % 1 43.392 MM 2.4291 3.69519e4 253.53271 99.1389 2 48.660 MM 1.1778 320.95422 4.54177 0.8611 Fotals : 3.72728e4 258.07448 Results obtained with enhanced integrator! *** End of Report ***							
Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area Height Area # [min] [min] mAU *s [mAU] % 1 43.392 MM 2.4291 3.69519e4 253.53271 99.1389 2 48.660 MM 1.1778 320.95422 4.54177 0.8611 Fotals : 3.72728e4 258.07448 Results obtained with enhanced integrator! *** End of Report ***			Area Percen	t Report			
Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area Height Area # [min] [mAU] %							
Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area # [min] min] [mAU] 1 43.392 MM 2 48.660 MM 1.1778 320.95422 4.54177 0.8611 Fotals : 3.72728e4 258.07448 Results obtained with enhanced integrator! *** End of Report ***	Sorted By		Signal				
Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area Height Area # [min] [min] mAU *s [mAU] % 	Multiplier	:	1.0000				
Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area Height Area # [min] [min] mAU *s [mAU] % 	Dilution	:	1.0000				
Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area Height Area # [min] [min] mAU *s [mAU] %	Use Multiplier &	Dilution	n Factor wit	h ISTDs			
Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area Height Area # [min] [min] mAU *s [mAU] % 							
Peak RetTime Type Width Area Height Area # [min] [min] mAU *s [mAU] % 1 43.392 MM 2.4291 3.69519e4 253.53271 99.1389 2 48.660 MM 1.1778 320.95422 4.54177 0.8611 Fotals : 3.72728e4 258.07448 Results obtained with enhanced integrator! *** End of Report ***	Signal 1. UND1 A	Werre 1					
Peak RetTime Type Width Area Height Area # [min] [min] mAU *s [mAU] %	orginal I. VWDI A	, waveler	ngth=254 nm				
<pre># [min] [min] mAU *s [mAU] %</pre>	Peak RetTime Tvp	e Width	Area	Voight	1		
1 43.392 MM 2.4291 3.69519e4 253.53271 99.1389 2 48.660 MM 1.1778 320.95422 4.54177 0.8611 Fotals : 3.72728e4 258.07448 Results obtained with enhanced integrator! *** End of Report ***	# [min]	[min]	mAU *s	[mAII]	Area		
1 43.392 MM 2.4291 3.69519e4 253.53271 99.1389 2 48.660 MM 1.1778 320.95422 4.54177 0.8611 Totals : 3.72728e4 258.07448 Results obtained with enhanced integrator! *** End of Report ***		-1	-	-	1		
2 48.660 MM 1.1778 320.95422 4.54177 0.8611 Totals : 3.72728e4 258.07448 Results obtained with enhanced integrator! *** End of Report ***	1 43.392 MM	2.4291	3.69519e4	253.53271	99.1389		
Totals : 3.72728e4 258.07448 Results obtained with enhanced integrator!	2 48.660 MM	1.1778	320.95422	4.54177	0.8611		
Results obtained with enhanced integrator! *** End of Report ***	Totala .						
Results obtained with enhanced integrator! *** End of Report ***	iocais :		3.72728e4	258.07448			
*** End of Report ***	Results obtained	d with er	hanced into	Trator			
*** End of Report ***							
(2) 11 전 20 20 20 20 20 20 20 20 20 20 20 20 20			*** End of	Report ***			

PDF ????? "pdfFactory Pro" ?????? www.fineprint.com.cn

Sample Name: zxb-11-115+116 Data File D:\HPCHEM\1\DATA\ZXB\ZXB00492.D OJ-H, n-Hexane:i-PrOH = 100/0, 0.15 mL/min, 214 nm TBS Injection Date : 11/9/2012 8:07:54 PM Sample Name : zxb-11-115+116 BnOOC Location : -Sample Name : zxb-11-115+116 Acq. Operator : zxb Acq. Method : D:\HPCHEM\1\METHODS\XFX_LC.M Last changed : 11/9/2012 8:04:07 PM by zxb (modified after loading) Analysis Method : D:\HPCHEM\1\METHODS\XFX_LC.M Last changed : 11/9/2012 9:12:08 PM by zxb (modified after loading) WWD1 A, Wavelength=214 nm (ZXBUZXB00492.D) TBS-BnOOC Norm. 800 600 400 .622 50.060 200 0 10 30 40 50 20 Area Percent Report Sorted By Signal : Multiplier : 1.0000 1.0000 Dilution Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=214 nm Height Area [mAU] %
 Peak RetTime Type Width
 Area
 Height
 Area

 # [min]
 [min]
 mAU
 *s
 [mAU]
 %

 ----|-----|

 ------|
 ------|

 1
 44.622
 BV
 2.1382
 4.12262e4
 285.62735
 50.4463

 2
 50.060
 VB
 2.9900
 4.04967e4
 187.39545
 49.5537
 Totals : 8.17229e4 473.02280 Results obtained with enhanced integrator! _____________ *** End of Report ***

PDF ???? "pdfFactory Pro" ????? www.fineprint.com.cn

S113

义器 1 2004-1-1 3:56:43 zxb

义器 1 2004-1-1 3:17:45 zxb

S117

zxb-11-138-oj-h-400-1-0.7-214

实验时间: 2012-11-28, 13:50:41 谱图文件:D:\zhuguangjiong\zxb\20121128\zxb-11-138-oj-h-400-1-0.7-214.org

PDF 文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.cn

zxb-11-137+138-oj-h-400-1-0.7-214

PDF 文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.cn

峰号	峰名	保留时间	峰高	峰面积	含量
1		33. 473	181961.813	11966860.000	99.2898 0.7102
 总计		36. 442	183399. 124	12052453. 734	100.0000

峰号	峰名	保留时间	峰高	峰面积	含量
1		32.232	105345.445	5672367.500	48.2355
2		35.823	106239.539	6087379.500	51.7645
总计			211584. 984	11759747.000	100.0000

zxb-11-137-oj-h-400-1-0.7-214

PDF 文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.cn

S126

实验时间: 2012-11-28, 14:38:17 谱图文件:D:\zhuguangjiong\zxb\20121128\zxb-11-137+138-oj-h-400-1-0. 7-214..org 报告时间: 2012-11-28, 15:00:26

PDF 文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.cn

唯亏	喗冶	保留时间	啤向	咩山尔	百里	
1		32. 232	105345.445	5672367.500	48.2355	
2		35.823	106239. 539	6087379.500	51.7645	
总计			211584.984	11759747.000	100.0000	

JKD 50 M

义器 1 2013-5-20 10:45:08 lxj

器 1 2004-1-1 5:53:22 zxb