Supporting Information

Ru(II)-Catalyzed Rearrangement of Allenic Sulfide Bearing Propargyl Moiety: Efficient Formation of Benzene Derivatives

Lingling Peng,[†] Xiu Zhang,[†] Jie Ma[†] and Jianbo Wang^{*,†,‡}

[†]Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China

[‡]State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

Contents

1.	General	. S2
2.	Preparation of 1-ethynyl-2-phenylthio-3,4-pentadienyl trimethylsilyl ether 4a-j	. S2
3.	Preparation of 1-ethynyl-2-phenyl-2-phenylthio-3,4-pentadienyl acetate 1	S3
4.	Characterization data	S3
5.	Preparation of 2-allenyl-1-ethynyl-2-phenylthio-cyclohexanyl acetate 10	S8
6.	Reference	S9
7.	Spectra (¹ H, ¹³ C NMR; MS, IR)	. S10

1. General

All reactions were performed under a nitrogen atmosphere in a flame-dried reaction flask. All solvents were distilled prior to use. Toluene and THF was distilled over sodium, DCE was distilled over NaH. For chromatography, 200-300 mesh silica gel (Yantai, China). ¹H and ¹³C NMR spectra were recorded at 300 MHz (or 200 MHz) and 75 MHz (or 50 MHz) with Varian Mercury 300 spectrometer. Chemical shifts are reported in ppm using tetramethylsilane as internal standard. IR spectra were recorded with a Nicolet 5MX-S infrared spectrometer. Mass spectra were obtained on a VG ZAB-HS mass spectrometer.

2. Preparation of 1-ethynyl-2-phenylthio-3,4-pentadienyl trimethylsilyl ether 4a-j

(1) Under a nitrogen atmosphere, 2-phenylthio-3,4-pentadienyl aldehyde (2.0 mmol) was dissolved in anhydrous THF (20 mL) in a 50 mL three necked-bottomed flask. To the solution was then added ethynylmagnesium bromide (0.5 mol/L in THF, 3.0 mmol) dropwise at 0 °C (ice-bath). The reaction was kept at the same temperature for about 20 min. Then saturated NH₄Cl was added, and the mixture was extracted with Et₂O. The combined organic layers were dried over MgSO₄ and evaporated; the residue was purified by a silica gel column. Elution with petroleum ether/ethyl acetate (15:1) afforded pure product of 1-Ethynyl-2-phenylthio-3,4-pentadienyl alcohol.

(2) Under a nitrogen atmosphere, 1-ethynyl-2-phenylthio-3,4-pentadienyl alcohol (2.0 mmol) and triethylamine (6.0 mmol) were mixed in anhydrous CH_2Cl_2 (20 mL) in a 50 mL round-bottomed flask. To the solution was then added TMSCl (4.0 mmol) at room temperature. The reaction was kept at the same temperature until completed as judged by TLC. Removal of the solvent in vacuo gave a crude residue, which was purified by silica gel column. Elution with petroleum ether/ethyl acetate (100:1) afforded pure product of **4a-i**.

3. Preparation of 1-ethynyl-2-phenyl-2-phenylthio-3,4-pentadienyl acetate 1

Under a nitrogen atmosphere, 1-ethynyl-2-phenylthio-3,4-pentadienyl alcohol (2.0 mmol) was dissolved in anhydrous CH_2Cl_2 (20 mL) in a 50 mL round-bottomed flask. Triethylamine (10.0 mmol), Ac_2O (6.0 mmol) and DMAP (0.02 mmol) were then added to this solution in turn at 0 °C (ice- bath). The reaction was continued at room temperature for about 0.5 h. Removal of the solvent in *vacuo* gave a crude residue, which was purified by silica gel column. Elution with petroleum ether/ethyl acetate (20:1) afforded pure product of **1**.

4. Characterization data

1-Ethynyl-2-phenyl-2-phenylthio-3,4-pentadienyl acetate (1)

Stereoisomer 1-A: white solid; IR (film) 3285, 1954, 1745, 1370, 1225, PhS here AcO_1 Stereoisomer 1-A: white solid; IR (film) 3285, 1954, 1745, 1370, 1225, 1025, 856, 751, 733, 694 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 2.09 (s, 3H), 2.45 (d, J = 2.1 Hz, 1H), 4.65 (dd, J = 6.9, 11.1 Hz,1H), 4.92 (dd, J = 6.9, 11.1 Hz,1H), 5.60-5.64 (m, 2H), 7.23-7.39 (m, 8H), 7.49-7.52 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 20.88, 60.34, 66.84, 75.65, 78.77, 79.55, 92.88, 127.62, 127.73, 128.48, 128.70, 129.42, 130.39, 137.90, 138.64, 169.47, 208.35. EI-MS (*m*/*z*, relative intensity): 334 (M⁺, 0.36), 292 (4), 274 (3), 183 (15), 165 (100), 109 (9), 43(46). HRMS calcd for C₂₁H₁₈O₂S [M⁺]

334.1028; Found: 334.1036.

Stereoisomer **1-B**: ¹H NMR (CDCl₃, 300 MHz) δ 2.00 (s, 3H), 2.05 (s, 3H), 2.42 (d, J = 2.1 Hz, 1H), 2.54 (d, J = 2.1 Hz, 1H), 4.47 (dd, J = 6.6 Hz, 11.1Hz, 1H), 4.62 (dd, J = 6.6, 11.1 Hz, 1H), 4.69 (dd, J = 6.6, 11.1 Hz, 1H), 4.89 (dd, J = 6.6, 11.1 Hz, 1H), 5.54-5.62 (m, 4H), 7.20-7.40 (m, 12H), 7.43-7.52 (m, 5H), 7.66-7.69 (m, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 20.62, 20.75, 60.31, 60.55, 66.78, 67.13, 75.64, 76.45, 78.70, 78.80, 78.88, 79.44, 92.83, 93.19, 127.54, 127.65, 127.81, 128.38, 128.42, 128.63, 128.97, 129.33, 129.38, 130.25, 130.36, 137.79, 138.14, 138.57, 169.08, 169.31, 207.44, 208.27.

1-Ethynyl-2-phenyl-2-phenylthio-3,4-pentadienyl trimethylsilyl ether (4a)

Mixture of two stereoisomers, yield-1: 96%, yield-2: 85%; IR (film) 3294, 2985, 1955, 1251, 1096, 842, 750, 693 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 0.037 (s, 9H), 0.092 (s, 9H), 2.44 (d, J = 2.1 Hz, 1H), 2.51 (d, J = 2.1 Hz, 1H), 4.52-4.77 (m, 6H), 5.56 (t, J = 6.9 Hz, 1H), 5.65 (t, J = 6.9 Hz, 1H), 7.15-7.39 (m, 16H), 7.58-7.61 (m, 2H), 7.70-7.72 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 0.032, 0.15, 62.76, 63.65, 68.01, 68.68, 75.56, 75.87, 78.26, 78.66, 82.57, 82.70, 93.05, 93.42, 127.15, 127.24, 127.30, 128.07, 128.46, 128.53, 129.66, 129.76, 131.88, 132.00, 136.84, 139.06, 139.21, 208.44, 208.85. EI-MS (m/z, relative intensity): 364 (M⁺, 8), 255 (30), 237 (30), 165 (93), 128 (18), 91 (36), 73 (100). HRMS calcd for C₂₂H₂₄OSSi [M⁺] 364.1317; Found: 364.1316.

1-Ethynyl-2-(4-methylphenyl)-2-phenylthio-3,4-pentadienyl trimethylsilyl ether (4b)

Mixture of two stereoisomers, yield-1: 99%, yield-2 84%; IR (film) 3298, 2958, 1955, 1251, 1097, 870, 843, 750, 692 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 0.088 (s, 9H), 0.15 (s, 9H), 2.36 (S, 6H), 2.44 (d, J = 2.1 Hz, 1H), 2.53 (d, J = 2.1 Hz, 1H), 4.54-4.81 (m, 6H), 5.59 (t, J

= 6.9 Hz, 1H), 5.66 (t, J = 6.9 Hz, 1H), 7.11-7.44 (m, 14H), 7.55 (d, J = 8.4 Hz, 2H), 7.64 (d, J = 8.4 Hz, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 0.056, 0.18, 21.03, 62.76, 63.46, 68.10, 68.73, 75.42, 75.76, 78.16, 78.52, 82.69, 82.85, 93.28, 93.59, 127.89, 127.99, 128.04, 128.38, 128.43, 129.60, 132.17, 136.02, 136.13, 136.77, 136.83, 208.40, 208.86. EI-MS (*m/z*, relative intensity): 378 (M⁺, 5), 288 (5), 269 (56), 251 (24), 179 (94), 73 (100). HRMS calcd for C₂₃H₂₆OSSi [M⁺] 378.1474; Found: 378.1480.

1-Ethynyl-2-(4-methoxyphenyl)-2-phenylthio-3,4-pentadienyl trimethylsilyl ether (4c)

Mixture of two stereoisomers, yield-1: 99%, yield-2: 89%; IR (film) 3291, 2957, 1954, 1509, 1250, 1094, 870, 842, 750 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 0.052 (s, 9H), 0.11 (s, 9H), 2.41 (d, *J* = 2.1 Hz, 1H), 2.50 (d, *J* = 2.1 Hz, 1H), 3.80 (s, 6H), 4.53-4.63 (m, 4H), 4.72 (d,

J = 6.9 Hz, 2H), 5.53 (t, J = 6.9 Hz, 1H), 5.60 (t, J = 6.9 Hz, 1H), 6.80-6.85 (m, 4H),

7.16-7.30 (m, 8H), 7.37-7.40 (m, 2H), 7.53-7.65 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 0.056, 0.18, 55.10, 62.57, 63.24, 68.14, 68.76, 75.42, 75.77, 78.19, 78.55, 82.67, 82.85, 93.35, 93.67, 112.43, 112.54, 128.07, 128.41, 128.46, 130.92, 131.06, 131.20, 132.15, 136.77, 136.81, 158.62, 158.68, 208.34, 208.83. EI-MS (*m*/*z*, relative intensity): 394 (M⁺, 3), 379 (2), 285 (98), 267 (20), 195 (69), 73 (100). HRMS calcd for C₂₃H₂₆O₂S_i S [M⁺] 394.1423; Found: 394.1431.

1-Ethynyl-2-(4-chlorophenyl)-2-phenylthio-3,4-pentadienyl trimethylsilyl ether (4d)

Mixture of two stereoisomers, yield-1: 90%, yield-2 82%; IR (film) 3296, 2959, 1955, 1490, 1252, 1094, 843, 750, 693 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 0.069 (s, 9H), 0.14 (s, 9H), 2.44 (d, *J* = 2.1 Hz, 1H), 2.54 (d, *J* = 2.1 Hz, 1H), 4.56-4.76 (m, 6H), 5.50 (t, *J* = 6.6 Hz, 1H), 5.57 (t, *J* = 6.6 Hz, 1H), 7.19-7.42 (m, 14H), 7.59 (d, *J* = 8.7 Hz, 1H), 5.57 (t, *J* = 6.6 Hz, 1H), 7.19-7.42 (m, 14H), 7.59 (d, *J* = 8.7 Hz, 1H), 5.57 (t, *J* = 6.6 Hz, 1H), 7.19-7.42 (m, 14H), 7.59 (d, *J* = 8.7 Hz, 1H), 5.57 (t, *J* = 6.6 Hz, 1H), 7.19-7.42 (m, 14H), 7.59 (d, *J* = 8.7 Hz, 1H), 5.57 (t, *J* = 6.6 Hz, 1H), 7.19-7.42 (m, 14H), 7.59 (d, *J* = 8.7 Hz, 1H), 5.57 (t, *J* = 6.6 Hz, 1H), 7.19-7.42 (m, 14H), 7.59 (d, *J* = 8.7 Hz), 1H), 5.57 (t, *J* = 6.6 Hz, 1H), 7.19-7.42 (m, 14H), 7.59 (d, *J* = 8.7 Hz), 1H), 5.57 (t, *J* = 6.6 Hz, 1H), 7.19-7.42 (m, 14H), 7.59 (d, *J* = 8.7 Hz), 1H), 5.57 (t, *J* = 6.6 Hz), 1H), 7.19-7.42 (m, 14H), 7.59 (d, *J* = 8.7 Hz), 1H), 5.57 (t, *J* = 6.6 Hz), 1H), 7.19-7.42 (m, 14H), 7.59 (d, *J* = 8.7 Hz), 1H), 5.57 (t, *J* = 6.6 Hz), 1H), 5.57 (t, *J* = 6.6 Hz), 1H), 5.57 (t, *J* = 6.6 Hz), 1H), 7.19-7.42 (m, 14H), 7.59 (d, *J* = 8.7 Hz), 1H), 5.57 (t, *J* = 6.6 Hz), 1H), 5.57 (t, J = 6.6 Hz), 5.50 (t, J = 6.6 Hz), 5.5

2H), 7.69 (d, J = 8.7 Hz, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 0.040, 0.17, 62.59, 63.26, 68.05, 68.56, 75.72, 76.15, 78.47, 78.86, 82.31, 82.46, 92.90, 93.40, 127.23, 127.33, 128.24, 128.74, 128.78, 131.30, 131.36, 131.66, 133.13, 133.25, 136.88, 136.96, 137.63, 137.86. EI-MS (*m/z*, relative intensity): 398 (M⁺, 4), 289 (26), 271 (19), 199 (39), 165 (10), 127 (9), 109 (10), 73 (100). HRMS calcd for C₂₂H₂₃OSSi³⁵Cl [M⁺] 398.0927; Found: 398.0921.

1-Ethynyl-2-(4-bromophenyl)-2-phenylthio-3,4-pentadienyl trimethylsilyl ether (4e)

Mixture of two stereoisomers, yield-1: 73%, yield-2: 97%; IR (film) 3298, 2958, 1954, 1585, 1485, 1251, 1097, 1010, 843, 750, 692 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 0.047 (s, 9H), 0.12 (s, 9H), 2.42 (d, J = 2.1 Hz,1H), 2.53 (d, J = 2.1 Hz, 1H), 4.51-4.74 (m, 6H), 5.47 (t, J = 6.6 Hz, 1H), 5.53 (t, J = 6.6 Hz, 1H), 7.12-7.62 (m, 18H); ¹³C NMR

 $(CDCl_3, 75 \text{ MHz}) \delta 0.040, 0.17, 62.66, 63.30, 67.98, 68.47, 75.75, 76.19, 78.48, 78.87, 82.26, 82.42, 92.82, 93.32, 121.46, 121.57, 128.22, 128.74, 128.77, 130.16, 130.26, 131.44, 131.67, 131.71, 136.86, 136.96, 138.14, 138.38, 208.30, 208.74. EI-MS ($ *m/z* $, relative intensity): 442 (M⁺, 3), 333 (17), 315 (8), 236 (36), 165 (15), 127 (13), 109 (15), 73 (100). HRMS calcd for <math>C_{22}H_{23}OSSi^{79}Br [M^+]$ 442.0422; Found: 442.0425.

1-Ethynyl-2-(3-chlorophenyl)-2-phenylthio-3,4-pentadienyl trimethylsilyl ether (4f)

Mixture of two stereoisomers, yield-1: 99%, yield-2 69%; IR (film) 3301, 2959, 1955, 1252, 1098, 868, 843, 750, 693cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 0.047 (s, 9H), 0.11 (s, 9H), 2.45 (d, *J* = 2.1 Hz, 1H), 2.54 (d, *J* = 2.1 Hz, 1H), 4.58-4.78 (m, 6H), 5.49 (t, *J* = 6.6 Hz, 1H), 2.54 (d, *J* = 2.1 Hz, 1H), 4.58-4.78 (m, 6H), 5.49 (t, *J* = 6.6 Hz, 1H), 2.54 (d, *J* = 2.1 Hz, 1H), 4.58-4.78 (m, 6H), 5.49 (t, *J* = 6.6 Hz, 1H), 2.54 (d, *J* = 2.1 Hz, 1H), 4.58-4.78 (m, 6H), 5.49 (t, *J* = 6.6 Hz, 1H), 2.54 (d, *J* = 2.1 Hz, 1H), 4.58-4.78 (m, 6H), 5.49 (t, *J* = 6.6 Hz, 1H), 4.58-4.78 (m, 6H), 5.49 (t, *J* = 6.6 Hz, 1H), 4.58-4.78 (m, 6H), 5.49 (t, *J* = 6.6 Hz, 1H), 4.58-4.78 (m, 6H), 5.49 (t, *J* = 6.6 Hz), 5.49 (t, J = 6.6 Hz), 5.49 (t,

1H), 5.58 (t, J = 6.6 Hz, 1H), 7.18-7.71 (m, 18H), ¹³C NMR (CDCl₃, 75 MHz) δ 0.024, 0.14, 62.45, 63.32, 67.92, 68.55, 75.81, 76.21, 78.52, 78.93, 82.22, 82.33, 92.64, 93.18, 127.27, 127.43, 127.93, 128.00, 128.23, 128.30, 128.39, 128.76, 128.87, 130.05, 130.28, 131.42, 131.52, 133.04, 133.15, 136.96, 137.00, 141.25, 141.45, 208.44, 208.80. EI-MS (*m/z*, relative intensity): 398 (M⁺, 8), 289 (11), 271 (13), 199 (35), 127 (12), 109 (13), 73 (100). HRMS calcd for C₂₂H₂₃OSSi³⁵Cl [M⁺] 398.0927; Found: 398.0924.

1-Ethynyl-2-(3,4-dichlorophenyl)-2-phenylthio-3,4-pentadienyl trimethylsilyl ether (4g)

Mixture of two stereoisomers, yield-1: 94%, yield-2 80%; IR (film) 3300, 2958, 1955, 1470, 1252, 1099, 867, 844, 750, 692 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 0.060 (s, 9H), 0.14 (s, 9H), 2.44 (d, J = 2.1 Hz, 1H), 2.55 (d, J = 2.1 Hz, 1H), 4.55-4.76 (m, 6H), 5.42 (t, J = 6.6 Hz, 1H), 5.49 (t, J = 6.6 Hz, 1H), 7.20-7.40 (m, 12H), 7.48-7.52

(m,1H), 7.58-7.61 (m, 1H), 7.69 (d, J = 2.1 Hz, 1H), 7.82 (d, J = 2.1 Hz, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 0.016, 0.14, 62.29, 62.96, 67.91, 68.41, 75.94, 76.45, 81.98, 82.08, 92.47, 93.13, 128.34, 128.36, 128.92, 128.99, 129.05, 129.19, 129.36, 131.10, 131.21, 131.37, 132.04, 132.24, 137.00, 137.10, 139.35, 139.64, 208.29, 208.71. EI-MS (*m/z*, relative intensity): 432 (M⁺, 5), 323 (12), 307 (17), 233 (36), 163 (16), 127 (18), 109 (38), 73 (100), 45 (38). HRMS calcd for C₂₂H₂₂OSSi³⁵Cl₂ [M⁺] 432.0538; Found: 432.0541.

1-Ethynyl-2-(3-methoxyphenyl)-2-phenylthio-3,4-pentadienyl trimethylsilyl ether (4h)

Mixture of two stereoisomers; IR (film) 3292, 2956, 1954, 1251, 1097, 869, 842, 751, 693 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 0.092 (s, 9H), 0.15 (s, 9H), 2.47 (d, *J* = 2.1 Hz, 1H), 2.55 (d, *J* = 2.1 Hz,

1H), 3.80 (s, 3H), 3.81 (s, 3H), 4.56-4.80 (m, 6H), 5.60 (t, J = 6.6 Hz, 1H), 5.68 (t, J = 6.6 Hz, 1H), 6.81-6.85 (m, 2H), 7.12-7.44 (m, 16H); ¹³C NMR (CDCl₃, 75 MHz) δ 0.040, 0.15, 55.09, 55.13, 62.76, 63.62, 68.09, 68.71, 75.52, 75.85, 78.25, 78.63, 82.56, 82.73, 93.10, 93.45, 112.89, 115.62, 115.80, 122.10, 122.13, 127.95, 128.07, 128.45, 128.53, 131.96, 132.06, 136.74, 136.79, 140.70, 140.83, 158.57, 158.63, 208.42, 208.85. EI-MS (*m/z*, relative intensity): 394 (M⁺, 18), 285 (26), 267 (20), 195 (70), 109 (14), 73 (100). HRMS calcd for C₂₃H₂₆O₂SSi [M⁺] 394.1423; Found: 394.1425.

1-Ethynyl-2-(2- thiophenyl)-2-phenylthio-3,4-pentadienyl trimethylsilyl ether (4i)

Mixture of two stereoisomers, yield-1: 98%, yield-2 94%; IR (film) 3295, 2958, 1954, 1251, 1098, 842, 749, 692 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 0.12 (s, 9H), 0.16 (s, 9H), 2.44 (d, J = 2.1 Hz, 1H), 2.53 (d, J = 2.1 Hz, 1H), 4.56-4.80 (m, 6H), 5.62 (t, J = 6.6 Hz, 1H), 5.67 (t, J = 6.6 Hz, 1H),

6.90-6.94 (m, 2H), 7.02-7.03 (m, 1H), 7.13-7.15 (m, 1H), 7.20-7.43 (m, 12H); ¹³C NMR (CDCl₃, 75 MHz) δ 0.024, 0.11, 60.96, 61.45, 68.84, 69.83, 75.41, 75.77, 78.86, 79.16, 82.30, 82.42, 93.44, 93.83, 125.50, 125.66, 125.73 125.99, 127.63, 127.74, 128.14, 128.70, 128.79, 131.87, 136.82, 136.88, 144.22, 144.33. EI-MS (*m*/*z*, relative intensity): 370 (M⁺, 3), 355 (1), 261 (64), 243 (18), 171 (52), 109 (11), 73 (100). HRMS calcd for C₂₀H₂₂OSiS₂ [M⁺] 370.0881; Found: 370.0886.

1-Ethynyl-2-(1-naphthyl)-2-phenylthio-3,4-pentadienyl trimethylsilyl ether (4j)

Mixture of two stereoisomers, yield-1: 90%, yield-2: 70%; IR (film) 3291, 2957, 1955, 1251,1092, 843, 775, 750, 692 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 0.019 (s, 4.5H), 0.18 (s, 9H), 2.64 (d, J = 1.8 Hz, 0.5H), 2.67 (d, J = 2.1 Hz, 1H), 4.41-4.53 (m, 1H), 4.83-4.96 (m, 2H), 5.27(d, J = 2.1 Hz, 0.5H), 5.33 (d, J = 2.1 Hz, 1H), 5.98 (t, J = 6.3 Hz, 0.5H), 6.07 (t, J = 6.3

Hz, 1H), 7.03-7.60 (m, 12H), 7.71-7.89 (m, 4H), 8.33 (d, J = 7.2 Hz, 0.5H), 8.90 (d, J = 7.2 Hz, 0.5H), 9.12 (d, J = 8.4 Hz, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ -0.15, 0.20, 62.61, 65.55, 68.63, 69.22, 75.87, 76.21, 78.21, 78.77, 83.08, 94.94, 123.86, 124.15, 124.50, 124.54, 124.72, 124.81, 127.73, 127.88, 128.18, 128.66, 128.88, 128.94, 129.15, 129.72, 131.62 131.82,

132.13, 132.90, 134.22, 134.63, 134.67, 136.08, 136.60, 209.01, 209.17. EI-MS (m/z, relative intensity): 414 (M⁺, 81), 399 (14), 324 (23), 287 (44), 215 (22), 73 (100). HRMS calcd for C₂₆H₂₆OSSi [M⁺] 414.1474; Found: 414.1469.

5. Preparation of 2-allenyl-1-ethynyl-2-phenylthio-cyclohexanyl acetate 10^{1}

Under a nitrogen atmosphere, 2-allenyl-1-ethynyl-2-phenylthio-cyclohexanol (2.0 mmol) and Ac₂O (3.0 mmol) were mixed in anhydrous CH₂Cl₂ (20 mL) in a 50 mL round-bottomed flask. TMSOTf (0.04 mmol) was then added to this solution at room temperature. The reaction was kept at the same temperature until completion as judged by TLC. Then saturated NaHCO₃ was then added, and the mixture was extracted with CH₂Cl₂. The combined organic layers were dried over NaSO₄ and evaporated, Removal of the solvent in *vacuo* gave a crude residue, which was purified by silica gel column. Elution with petroleum ether/ethyl acetate (20:1) afforded pure product of 10.

2-Allenyl-1-ethynyl-2-phenylthio-cyclohexanyl acetate (10)

IR (film) 3284, 2940, 2863, 1953, 1748, 1229, 1216, 1016, 1003, 750, 693 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 1.39-1.47 (m,1H), 1.59-1.88 (m, 5H), 2.09 (s, 3H), 2.26-2.42 (m, 1H), 2.54-2.66 (m, 1H), 2.75 (s, 1H), 4.32 (dd, J = 6.6, 10.8 Hz, 1H), 4.71 (dd, J = 6.6, 10.8 Hz, 1H), 5.65 (t, J = 6.6 Hz, 1H), 7.28-7.41 (m, 3H), 7.51-7.55 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 21.19, 21.58, 21.73, 31.23, 31.99,

60.20, 76.58, 77.62, 80.41, 80.94, 93.41, 128.08, 128.87, 131.37, 138.38, 168.82, 208.72. EI-MS (*m*/*z*, relative intensity): 312 (M⁺, 0.33), 270 (25), 252 (37), 161 (77), 143 (23), 128 (32), 110 (31), 91 (48), 43 (100). HRMS calcd for $C_{19}H_{20}O_2S$ [M⁺] 312.1184; Found: 312.1192.

6. Reference

1 P. A. Procopiou, S. P. D. Baugh, S. S. Flack, G. G. A. Inglis, J. Org. Chem. 1998, 63, 2342.

7. Spectra (¹H, ¹³C NMR; MS, IR)

ы

S16

v

300M 9-P80-1-34C1Ph-0TMS

ы

S28

S44

300M 9-P80-2-3CIPh-PhOH Archive directory: /export/home/vmmrl/vmmrsys/data Sample directory: file: PROTOM

Pulse Sequence: s2pul

C5.054 -4.078 .000 ľ CI 6f HO SPh 10 9 8 6 4 3 2 ppm 7 i 10.34 1.05 2.00 300M 9-P88-1-3C1Ph-PhOH Pulse Sequence: s2pul -151.414 77.428 77.000 76.580 ----38.536 CI 6f HO SPh -----180 140 160 ------120 ----80 60 40 ppm 100 20

