$\mathbf{P}(\mathbf{O}) \mathbf{R}_{2}$ Directed $\mathbf{P d}(\mathrm{II})$-Catalyzed $\mathbf{C}\left(\mathbf{s p}^{\mathbf{2}}\right)$-H Acylation

Yan-Na Ma, ${ }^{\text {a }}$ Qiu-Ping Tian, ${ }^{\text {a }}$ Hong-Yu Zhang, ${ }^{a}$ An-Xi Zhou and Shang-Dong Yang ${ }^{\text {a,b* }}$

${ }^{a}$ State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China. E-mail: yangshd@lzu.edu.cn;

Fax: +86-931-8912859; Tel: +86-931-8912859
${ }^{b}$ State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou
Institute of Chemical Physics, Lanzhou 730000, P. R. China

Supporting Information

Table of Contents
I . General methods and materials S2
II. Typical procedures for the synthesis of substrates S2-S3
III. Optimization of the reaction conditions for the palladium-catalyzed $\mathbf{C}(\mathbf{s p 2})$-H acylationwith alcoholsS3
IV. General procedures for the palladium-catalyzed $\mathbf{C}(\mathbf{s p 2})$-H acylation S4
V. General procedures for the transformations of acylated products S4-S5
VI. References S5
VII. Characterization of the products S6-
S15VII. NMR charts S16-

I . General Methods and Materials

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker advance III 400 spectrometer (400 MHz for ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$) in CDCl_{3} with TMS as internal standard. Chemical shifts (δ) were measured in ppm relative to TMS $\delta=0$ for ${ }^{1} \mathrm{H}$, or to chloroform $\delta=77.0$ for ${ }^{13} \mathrm{C}$ as internal standard. ${ }^{31} \mathrm{P}$ NMR spectra and ${ }^{19} \mathrm{~F}$ NMR were recorded on the same instrument. Data are reported as follows: Chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet), Coupling constants, J, are reported in hertz. Mass data were measured with Thermo Scientific DSQ II mass spectrometer. IR spectra were recorded on a FT-IR spectrometer and only major peaks are reported in cm^{-1}. The starting materials were purchased from Aldrich, Acros Organics, J\&K Chemicals Adamas-beta or TCI and used without further purification. Solvents were dried and purified according to the procedure from "Purification of Laboratory Chemicals book". Thin-layer chromatography (TLC) was performed using 60 mesh silica gel plates visualized with short-wavelength UV light (254 nm).

II. Typical Procedures for the Synthesis of Substrates ${ }^{[1]}$

Water $(4.0 \mathrm{~mL})$ and DME $(30.0 \mathrm{~mL})$ were poured into a round-bottomed flask, fitted with a condenser and argon flow, and bubbled through with argon. Potassium carbonate ($3.45 \mathrm{~g}, 25$ mmol), 1-bromo-2-iodobenzene ($2.8 \mathrm{~g}, 10.0 \mathrm{mmol}$), substituted phenylboronic acid (10.5 mmol), and bis(triphenylphosphine)palladium(II) chloride ($105 \mathrm{mg}, 0.15 \mathrm{mmol}$) were added to the mixture, which was stirred at $80^{\circ} \mathrm{C}$ for 5 h in an oil bath until substrate disappeared as judged by TLC. The reaction mixture was allowed to cool to r.t., DME was evaporated, and water (40.0 mL) and ether $(20.0 \mathrm{~mL})$ were added. The layers were separated and the aqueous layer was extracted with diethylether ($3 \times 20.0 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over magnesium sulfate, filtered, and evaporated in vacuo to obtain a yellow oil, which was purified further using column chromatography on silica gel (eluent: heptane $30 \% \mathrm{EtOAc}$ in heptane). The title compound was isolated as a white amorphous solid ($2.10 \mathrm{~g}, 90 \%$).

$5.6 \mathrm{~mL}(14.0 \mathrm{mmol})$ of $\mathrm{n}-\mathrm{BuLi}$ in n -hexane $(2.50 \mathrm{M})$ were added dropwise to a suspension of
$(11.5 \mathrm{mmol})$ of 2-bromo-1, 1^{\prime}-biphenyl in 24 mL of diethyl ether at $0^{\circ} \mathrm{C}$. The resulting beige-colored suspension was stirred for an additional 2 h at $0^{\circ} \mathrm{C}$. Then, $\mathrm{ClP}(t-\mathrm{Bu})(\mathrm{Ph})(2.0 \mathrm{~g}, 10.0$ mmol) was added dropwise in freshly distilled diethyl ether $(20.0 \mathrm{~mL})$. The mixture was then stirred at r.t. for 2 h , filtered and solvent was removed in vacuo to yield a residue, which was used without further purification. To the residue in $\mathrm{MeOH}(36.0 \mathrm{~mL})$ was added dropwise at $<40^{\circ} \mathrm{C}$ 30% aq. $\mathrm{H}_{2} \mathrm{O}_{2}$ solution ($1.7 \mathrm{~mL}, 15.0 \mathrm{mmol}$). The resulting clear solution was stirred at r.t. for 1 h , treated with sat. $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution $(2.0 \mathrm{~mL})$, and the mixture was concentrated at the rotavapor to remove the MeOH . The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{C1}_{2}(3 \times 20 \mathrm{~mL})$. The extract was washed with brine and dried over MgSO_{4}. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and solvent was evaporated under reduced pressure. The desired product was obtained after purification by flash chromatography on silica gel.

III. Optimization of the reaction conditions for the palladium-catalyzed $\mathbf{C}(\mathrm{sp} 2)$ - H acylation

 with alcohols ${ }^{a}$

Entry	Cat	Oxidant	Solvent	Yield (\%) ${ }^{b}$	Ratio $^{\text {c }}$
1	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	$\mathrm{CH}_{3} \mathrm{CN}$	trace	
2	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TBHP	$\mathrm{CH}_{3} \mathrm{CN}$	5	
3	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{Ag}_{2} \mathrm{O}$	$\mathrm{CH}_{3} \mathrm{CN}$	n.r.	
4	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	$\mathrm{CH}_{3} \mathrm{CN}$	trace	
5	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TBHP	DCE	58	$10: 1$
6	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TBHP	PhCl	48	14:1
7	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TBHP	DME	n.r.	
8	$\mathrm{Pd}(\mathrm{TFA})_{2}$	TBHP	DCE	70	$10: 1$
9	PdCl_{2}	TBHP	DCE	trace	
10	$\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}$	TBHP	DCE	trace	
11^{d}	$\mathrm{Pd}(\text { TFA })_{2}$	TBHP	DCE	76	$10: 1$
12^{e}	$\mathrm{Pd}(\mathrm{TFA})_{2}$	TBHP	DCE	80	10:1

[^0]
IV. General procedures for the palladium-catalyzed C(sp2)-H acylation.

Under air atmosphere, 2-(tert-butylphenylhosphoryl)biphenyl 1a ($100.2 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(6.7 \mathrm{mg}, 0.03 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(202.5 \mathrm{mg}, 0.75 \mathrm{mmol}, 2.5$ equiv), and benzoyl formic acid $\mathbf{2 a}$ ($90 \mathrm{mg}, 0.6 \mathrm{mmol}, 2.0$ equiv) were added to a sealed tube containing a magnetic stir bar. After which, $3.0 \mathrm{mLCH} \mathrm{CN}_{3} \mathrm{CN}$ was added with a syringe. Then the mixture was stirred at $130{ }^{\circ} \mathrm{C}$ in an oil bath for 3.0 hours. After cooling to room temperature, the solution was removed in vacuo to yield a residue, which was purified by silica gel to afford pure 3a as oil (101.1 mg, 72\%).

Under air atmosphere, 2-(tert-butylphenylhosphoryl)biphenyl 1a ($100.2 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.0$ equiv) and $\operatorname{Pd}(\mathrm{TFA})_{2}(9.9 \mathrm{mg}, 0.03 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ were added to a tube containing a magnetic stir bar. After which, 1.5 mL DCE was added using a syringe. Then 70% aq. TBHP solution ($165 \mathrm{uL}, 1.20 \mathrm{mmol}, 4.0$ equiv) and benzyl alcohol ($78 \mathrm{uL}, 0.75 \mathrm{mmol}, 2.5 \mathrm{eq}$) were added with microsyringes. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ in an oil bath for 16 hours until substrate disappeared as judged by TLC. After cooling to room temperature, the solution was removed in vacuo to yield a residue, which was purified by silica gel to afford pure 2 a and 3 a $(80 \% 2 a: 3 a=10: 1)$.

V. General procedures for the transformations of acylated products

Under Ar atmosphere, $0.1 \mathrm{~mL}(0.25 \mathrm{mmol})$ of $\mathrm{n}-\mathrm{BuLi}$ in n -hexane $(2.50 \mathrm{M})$ were added dropwise to a suspension of triphenylmethyphosphonium iodide (0.3 mmol) in 2 mL of THF at 0
${ }^{\circ} \mathrm{C}$. The resulting suspension was stirred for an additional 2 h at rt . Then, $87.2 \mathrm{mg}(0.2 \mathrm{mmol})$ of (2'-(tert-butyl(phenyl)phosphoryl)biphenyl-2-yl)(phenyl)methanone was added dropwise in freshly distilled THF (1.0 mL). The mixture was then stirred for 10 h under reflux. The desired product was obtained after purification by flash chromatography on silica gel (white solid, 71 mg , 81\%). ${ }^{[2]}$

$87.2 \mathrm{mg}(0.2 \mathrm{mmol})$ of (2'-(tert-butyl(phenyl)phosphoryl)biphenyl-2-yl)(phenyl)methanone was dissolved in 2.0 mL MeOH . Then 0.24 mmol of LiAlH_{4} was added slowly at $0{ }^{\circ} \mathrm{C}$. After 10 minutes, the reaction was completed. The desired product was obtained after purification by flash chromatography on silica gel (white solid, $45 \mathrm{mg}, 51 \%$).

(2'-(diisopropylphosphoryl)biphenyl-2-yl)(phenyl)methanone (0.2 mmol) and hydroxylamine hydrochloride (0.8 mmol) were dissolved in 2 ml MeOH . Pyridine (1.0 mmol) was added via syringe and after stirring at room temperature overnight the solvent was evaporated. The product was obtained after purification by flash chromatography on silica gel (white solid, $58 \mathrm{mg}, 71 \%$). ${ }^{[3]}$

(2'-(diisopropylphosphoryl)biphenyl-2-yl)(phenyl)methanone (0.2 mmol) was dissolved in 2 ml THF, p-tolylmagnesium bromide ($3.0 \mathrm{mmol}, 1.5$ equiv) was added slowly via syringe at $0{ }^{\circ} \mathrm{C}$ and after stirring at room temperature for 3 hours the solvent was evaporated. The product was obtained after purification by flash chromatography on silica gel (white solid, $59 \mathrm{mg}, 61 \%$)

VI. References

[1] H. L. Wang, R. B. Hu, H. Zhang, A. X. Zhou and S.-D.Yang, Org. Lett. 2013, 15, 5302.
[2] X. Wang, Y. F. Chen, L. F. Niu and P. F. Xu, Org. Lett., 2009, 11, 3310.
[3] S. B. Liu, Y. Yu and L. S. Liebeskind, Org. Lett., 2007, 9, 1947.

VII. Characterization of the products

Note: when the directed group is $-\mathrm{P}(\mathrm{O})(\mathrm{tBu})(\mathrm{Ph})$, the products have two chiral centers, which determine they are a mixture of four diastereoisomers.

colorless oil; ${ }^{31} \mathbf{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{13}\right) \delta: 40.98,39.67 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.98$ $(\mathrm{d}, J=7.3 \mathrm{~Hz}, 0.78 \mathrm{H}), 7.90-7.80(\mathrm{~m}, 1.0 \mathrm{H}), 7.74-7.72(\mathrm{~m}, 1.0 \mathrm{H}), 7.64-7.60(\mathrm{~m}, 1.0 \mathrm{H}), 7.57-7.53(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 1.0 \mathrm{H}), 7.51-7.33(\mathrm{~m}, 7.3 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 3.3 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 1.0 \mathrm{H}), 7.07-7.03(\mathrm{~m}$, $1.0 \mathrm{H}), 6.64(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 0.4 \mathrm{H}), 1.23(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 5.0 \mathrm{H}), 1.15(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 4.0 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 198.22,196.59,146.77,146.72,146.22,146.17,141.76,141.72$, $140.56,140.53,138.20,138.05,137.87,137.11,134.05,133.97,133.26,133.16,133.11,132.18$, $132.05,131.99,131.94,131.86,131.78,131.74,131.00,130.93,130.89,130.82,130.79,130.63$, $130.49,130.40,130.37,130.23,130.21,130.15,130.12,129.32,129.24,128.63,128.52,127.93$, $127.82,127.78,127.64,127.33,127.22,126.45,126.11,126.06,125.94,125.88,125.77,35.12(\mathrm{~d}$, $J=16.0 \mathrm{~Hz}), 34.42(\mathrm{~d}, J=16.0 \mathrm{~Hz}), 26.01,25.92$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 439.4$

colorless oil; ${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 52.17 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.97-7.95(\mathrm{~m}$, $2 \mathrm{H}), 7.53-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.00(\mathrm{~m}, 2 \mathrm{H})$, $1.05-0.99(\mathrm{~m}, 9 \mathrm{H}), 0.58(\mathrm{dd}, J=15.4 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 197.04$, $147.24(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 141.01(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 138.28,138.11,133.22,133.13,132.00,131.00$, 130.61, $129.96(\mathrm{~d}, J=10.8 \mathrm{~Hz}), 129.85(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 129.27(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 127.59,126.92(\mathrm{~d}$, $J=82.1 \mathrm{~Hz}), 126.26(\mathrm{~d}, J=11.1 \mathrm{~Hz}), 125.98,27.96(\mathrm{~d}, J=65.1 \mathrm{~Hz}), 25.60(\mathrm{~d}, J=67.0 \mathrm{~Hz}), 16.72$ $(\mathrm{d}, J=1.4 \mathrm{~Hz}), 15.67(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 15.60(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 14.91(\mathrm{~d}, J=2.6 \mathrm{~Hz}) ;$ MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 391.3$

colorless oil; ${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 54.54 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.00-7.98(\mathrm{~m}$, 2H), 7.55-7.29 (m, 10H), 7.24 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.18$ (d, $J=13.3 \mathrm{~Hz}, 9 \mathrm{H}), 0.98$ (d, $J=13.4 \mathrm{~Hz}$, 9H); ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 197.46,147.48(\mathrm{~d}, J=3.5 \mathrm{~Hz}$), $142.93(\mathrm{~d}, J=2.7 \mathrm{~Hz})$, $138.47,137.79,134.33,134.24132 .10,131.16,130.68(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 130.44,129.36(\mathrm{~d}, J=2.6$ $\mathrm{Hz}), 129.19(\mathrm{~d}, J=4.7 \mathrm{~Hz}), 127.65,127.50(\mathrm{~d}, J=67.7 \mathrm{~Hz}), 125.74,125.32(\mathrm{~d}, J=11.1 \mathrm{~Hz})$, $37.12(\mathrm{~d}, J=40.7 \mathrm{~Hz}), 36.54(\mathrm{~d}, J=39.8 \mathrm{~Hz}), 27.90,26.91$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 419.2$

colorless oil; ${ }^{31} \mathbf{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 47.51 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.98(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.60(\mathrm{~m}, 9 \mathrm{H}), 1.46-$ $1.43(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.04(\mathrm{~m}, 9 \mathrm{H}), 0.92-0.86(\mathrm{~m}, 1 \mathrm{H}), 0.78-0.71(\mathrm{~m}, 1 \mathrm{H}), 0.61-0.56(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 196.92,147.06(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 142.04(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 137.99,137.94$, $133.14(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 132.07,131.25,130.42,129.78(\mathrm{~d}, J=11.0 \mathrm{~Hz}), 129.55(\mathrm{~d}, J=2.4 \mathrm{~Hz})$, $129.20,128.86,127.52,126.72,126.22(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 125.80,37.96(\mathrm{~d}, J=65.2 \mathrm{~Hz}), 35.56(\mathrm{~d}, J$ $=67.1 \mathrm{~Hz}), 26.51,26.40(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 26.29,26.17,26.05,25.69,25.57,25.29(\mathrm{~d}, J=3.0 \mathrm{~Hz})$, $24.63(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 24.54(\mathrm{~d}, J=3.1 \mathrm{~Hz})$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 471.2$

colorless oil; ${ }^{31} \mathbf{P}$ NMR (162 MHz, CDCl_{3}) $\delta: 28.55 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.85-7.83(\mathrm{~m}$, 2H), 7.75-7.71 (m, 2H), 7.60-7.7.37 (m, 11H), 7.33-7.29 (t, J = 6.9 Hz, 6H), 7.28-7.14 (m, 7H); ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 197.10,145.51(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 140.46(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 138.17$, 137.27, 134.45, $134.10(\mathrm{~d}, J=12.3 \mathrm{~Hz}), 133.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 132.36(\mathrm{~d}, J=12.6 \mathrm{~Hz}), 132.17(\mathrm{~d}$, $J=9.7 \mathrm{~Hz}), 131.89,131.79(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 131.67,131.34(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 131.26,131.01,130.98$, $130.41,130.24,129.59(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 128.27(\mathrm{~d}, J=11.8 \mathrm{~Hz}), 128.10,127.72(\mathrm{~d}, J=12.1 \mathrm{~Hz})$, $126.69,126.57(\mathrm{~d}, J=12.5 \mathrm{~Hz})$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 459.4$

colorless oil; ${ }^{31} \mathbf{P}$ NMR (162 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 40.88,39.55 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.99$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 0.8 \mathrm{H}), 7.73(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1.2 \mathrm{H}), 7.68-7.62(\mathrm{~m}, 1.8 \mathrm{H}), 7.55-7.34(\mathrm{~m}, 6.0 \mathrm{H}), 7.28-$ $7.21(\mathrm{~m}, 4.2 \mathrm{H}), 7.17-7.09(\mathrm{~m}, 1.6 \mathrm{H}), 7.07-7.02(\mathrm{~m}, 1.2 \mathrm{H}), 6.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 2.40(\mathrm{~s}$, 3.0H), 1.26-1.13 (m, 9.0H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 198.34,196.71,143.73,143.68$, $143.26,143.21,141.73,141.70,140.54,140.51,138.29,138.01,137.85,137.13,135.58,135.47$, $135.39,135.28,134.02,133.93,133.84,133.14,133.09,132.99,132.61,132.50,132.19,132.03$, $131.90,131.86,131.78,131.75,131.66,131.42,131.31,131.17,131.14,131.09,131.01,130.96$, $130.94,130.78,130.76,130.69,130.53,130.33,130.30,129.54,129.25,129.13,128.66,128.49$, $128.45,127.90,127.80,127.64,127.58,127.28,127.17,126.29,125.93,35.22,35.04,34.52$, 34.34, 26.07, 25.97, 21.30; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 453.2$

colorless oil; ${ }^{31} \mathbf{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 40.67,39.39 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.99$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 0.8 \mathrm{H}), 7.88-7.78(\mathrm{~m}, 1.0 \mathrm{H}), 7.73(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1.0 \mathrm{H}), 7.66-7.62(\mathrm{~m}, 1.0 \mathrm{~Hz}), 7.53-$ $7.17(\mathrm{~m}, 10.4 \mathrm{H}), 7.05-7.04(\mathrm{~m}, 1.6 \mathrm{H}), 6.94(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.53(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 0.4 \mathrm{H}), 2.32-$ $2.31(\mathrm{~d}, 3.0 \mathrm{H}), 1.25-1.14(\mathrm{~m}, 9.0 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 198.69,196.84,146.84$, $146.79,146.23,138.88,138.23,138.06,137.97,137.60,137.12,136.15,135.70,134.34,134.25$, $134.13,133.45,133.35,133.25,132.17,132.09,131.92,131.83,131.77,131.68,131.55,131.17$, $130.95,130.84,130.64,130.49,130.32,130.19,130.06,129.81,129.33,129.10,128.97,128.77$, $127.95,127.84,127.64,127.48,127.29,129.18,125.92$, $125.76,125.64,35.18(\mathrm{~d}, \mathrm{~J}=19 \mathrm{~Hz})$, $34.48(\mathrm{~d}, \mathrm{~J}=19 \mathrm{~Hz}), 26.09,25.98,21.08$, 21.02; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 453.2$

colorless oil; ${ }^{31} \mathbf{P}$ NMR (162 MHz, CDCl_{3}) $\delta: 38.57 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.98-7.97(\mathrm{~m}$, $2 H), 7.92-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.70-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.36(\mathrm{~m}, 8 \mathrm{H}), 7.24-7.17(\mathrm{~m}$,
$3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 197.85,145.69(\mathrm{~d}, J$ $=4.8 \mathrm{~Hz}), 141.10(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 138.72,137.64,136.49,134.49,134.39,132.63,132.12,131.88$, $131.80,131.58,131.04,130.83,130.80,130.74,130.63,130.16$ (d, $J=2.5 \mathrm{~Hz}), 127.94,127.83$, 127.69, 126.84, 126.13, 126.01, 125.84; MS (ESI): found [M+H] 453.2

colorless oil; ${ }^{31} \mathbf{P}$ NMR (162 MHz, CDCl_{3}) $\delta: 41.19,39.74 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (~} 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.97$ $(\mathrm{d}, J=12.4 \mathrm{~Hz}, 0.8 \mathrm{H}), 7.93-7.88(\mathrm{~m}, 0.5 \mathrm{H}), 7.87-7.82(\mathrm{~m}, 0.6 \mathrm{H}), 7.72-7.60(\mathrm{~m}, 3.6 \mathrm{H}), 7.53-7.32$ $(\mathrm{m}, 7.7 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 2.0 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 0.6 \mathrm{H}), 7.08-7.04(\mathrm{~m}, 1.0 \mathrm{H}), 6.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $0.4 \mathrm{H}), 1.26-1.13(\mathrm{~m}, 9.0 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 196.98,195.32,145.52,145.37$, $145.32,144.76,144.71,144.24,138.82,137.81,137.24,136.94,134.10,134.01,133.56,133.18$, $133.08,132.86,132.71,132.17,132.06,131.88,131.80,131.74,131.66,131.48,131.32,131.24$, $131.21,130.99,130.88,130.80,130.78,130.72,130.59,130.51,130.48,130.42,129.77,128.95$, $128.89,128.62,128.53,128.29,128.25,128.16,128.14,128.02,127.65,127.60,127.49,126.83$, $126.71,126.64,126.52,125.96,125.92,125.59,125.33,125.12,125.07,125.03,122.42,35.29$, $35.16,34.59,34.47,25.98,25.87 ;{ }^{19}$ F NMR $\left(376 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right) \delta:-62.39,-62.50$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 507.2$

colorless oil; ${ }^{31} \mathbf{P}$ NMR (162 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 40.65,39.81 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.65$ $(\mathrm{s}, 0.4 \mathrm{H}), 8.27(\mathrm{~s}, 0.5 \mathrm{H}), 8.03-7.98(\mathrm{~m}, 0.8 \mathrm{H}), 7.87-7.76(\mathrm{~m}, 3.4 \mathrm{H}), 7.69-7.63(\mathrm{~m}, 1.4 \mathrm{H}), 7.60-$ $7.25(\mathrm{~m}, 10.5 \mathrm{H}), 7.15(\mathrm{t}, J=7.2 \mathrm{~Hz} 0.5 \mathrm{H}), 6.94-6.90(\mathrm{~m}, 0.6 \mathrm{H}), 6.82-6.78(\mathrm{~m}, 1.0 \mathrm{H}), 6.67(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 1.24-1.02(\mathrm{~m}, 9.0 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 198.74,196.63,146.81$, $146.75,146.07146 .02,141.91,141.88,140.30,140.26,138.70,137.42,135.27,135.23,135.10$, $134.97,134.27,134.18,134.10,133.54,133.44,133.33,133.25,132.29,132.04,131.95,131.85$, $131.74,131.72,131.66,131.64,131.55,131.48,131.02,130.91,130.87,130.66,130.25,130.20$, $130.17,129.74,129.68,129.37,129.07,128.86,128.54,128.44,128.28,128.10,128.05,128.01$, $127.94,127.66,127.58,127.51,127.44,127.40,127.16,127.05,126.74,126.25,126.21,126.10$, $126.00,125.97,125.86,125.65,125.14,35.16,34.47,25.97,25.91$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+}$ 489.2

colorless oil; ${ }^{31} \mathbf{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 40.91,39.71 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.89-$ $7.82(\mathrm{~m}, 1.7 \mathrm{H}), 7.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2.0 \mathrm{H}), 7.57-7.02(\mathrm{~m}, 12.7 \mathrm{H}), 6.67(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 0.4 \mathrm{H}), 2.35-$ $2.32(\mathrm{~m}, 3.0 \mathrm{H}), 1.26-1.13(\mathrm{~m}, 9.0 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 197.99,196.41,146.68$, $146.63,146.25,146.20,142.93,142.76,141.39,141.36,140.43,140.40,138.44,137.36,135.48$, $135.23,134.07$, $133.98,133.30$, $133.21,133.12$, 132.11, 132.00, 131.91, 131.83, 131.77, 131.71, $131.69,130.98,130.84,130.67,130.32,130.29,130.24,130.22,130.14,130.11,129.77,129.00$, 128.93, 128.73, 128.58, 128.47, 128.40, 128.31, 127.95, 127.84, 127.28, 127.16, 126.43, 126.11, $126.04,125.92,125.89,125.77,35.24,35.07,34.54,34.37,26.02,25.96,21.53,21.47$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 453.2$

colorless oil; ${ }^{\mathbf{3 1} \mathbf{P}} \mathbf{N M R}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 40.67,39.41 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.02(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 1.0 \mathrm{H}), 7.89-7.85(\mathrm{~m}, 0.5 \mathrm{H}), 7.82-7.78(\mathrm{~m}, 0.6 \mathrm{H}), 7.74(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1.0 \mathrm{H}), 7.67-7.63$ $(\mathrm{m}, 1.0 \mathrm{H}), 7.54-7.46(\mathrm{~m}, 2.2 \mathrm{H}), 7.44-7.22(\mathrm{~m}, 7.0 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 0.6 \mathrm{H}), 7.12-7.04(\mathrm{~m}, 1.5 \mathrm{H})$, $6.83(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1.0 \mathrm{H}), 6.71(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1.0 \mathrm{H}), 6.64(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 0.4 \mathrm{H}), 3.79-3.77(\mathrm{~m}$, $3.0 \mathrm{H}), 1.23-1.15(\mathrm{~m}, 9.0 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 197.23,195.56,163.01,162.85$, $146.66,146.60,146.10,141.28,141.25,140.00,139.97,138.81,137.78,134.25,134.16,134.10$, $133.48,133.38,133.17,132.97,132.12,132.09,132.01,131.90,131.81,131.76,131.68,131.49$, $131.19,130.95,130.88,130.64,130.37,130.35,130.17,130.15,129.84,128.96,128.78,128.58$, $128.50,128.07,128.03,128.00,127.89,127.70,127.34,127.23,126.56,126.09,125.97,113.12$, $112.93,55.25,55.23,35.28,35.12,34.58,34.42,26.08,25.97$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 469.2$

colorless oil; ${ }^{31} \mathbf{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 40.62,39.42 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.94$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 0.8 \mathrm{H}), 7.91-7.87(\mathrm{~m}, 0.4 \mathrm{H}), 7.77-7.72(\mathrm{~m}, 0.6 \mathrm{H}), 7.67(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1.0 \mathrm{H}), 7.59-$ $7.55(\mathrm{~m}, 1.0 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 3.6 \mathrm{H}), 7.43-7.21(\mathrm{~m}, 6.7 \mathrm{H}), 7.14-7.07(\mathrm{~m}, 2.7 \mathrm{H}), 6.55(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $0.4 \mathrm{H}), 1.22-1.14(\mathrm{~m}, 9.0 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 197.31,195.75,146.84,146.79$,
$146.04,146.00,141.79,141.76,140.46,140.43,138.59,138.45,138.08,137.31,136.46,135.97$, $134.25,134.16,133.97,133.66,133.57,133.10$, 132.16, 132.13, 132.07, 131.96, 131.84, 131.76, $131.74,131.65,131.33,131.19,130.94,130.91,130.84,130.74,130.68,130.66,130.31,130.28$, $130.25,129.82,129.48,128.94,128.78,128.63,128.43,128.16,128.01,127.92,127.51,127.46$, 127.13, 126.67, 126.30, 126.26, 126.15, 125.99, 125.88, 35.23, 34.53, 26.05, 25.87; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 473.2,475.2$

colorless oil; ${ }^{31} \mathbf{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 41.13,39.90 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.92-$ $7.84(\mathrm{~m}, 1.3 \mathrm{H}), 7.78-7.73(\mathrm{~m}, 0.6 \mathrm{H}), 7.63-7.22(\mathrm{~m}, 13.4 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 1.5 \mathrm{H}), 6.54(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 0.4 \mathrm{H}), 1.22-1.15(\mathrm{~m}, 9.0 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 197.37,195.85,146.80,146.75$, $146.05,146.00,141.74,141.71,140.46,140.42,137.89,137.12,136.83,136.28,134.18,134.09$, $133.71,133.62,133.53,132.83,132.24,132.03,131.92,131.81,131.77,131.62,131.33,131.13$, $130.90,130.85,130.74,130.72,130.36,130.34,129.54,128.86,128.66,128.54,128.00,127.89$, $127.81,127.58,127.47,127.36,127.28,126.92,126.63,126.27,126.15,126.01,125.89,35.21$, 35.16, 34.51, 34.46, 25.99, 25.82; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 517.2,519.2$

colorless oil; ${ }^{31} \mathbf{P}$ NMR (162 MHz, CDCl_{3}) $\delta: 40.83,39.50 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (~} 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.06$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 0.8 \mathrm{H}), 7.92-7.87(\mathrm{~m}, 0.4 \mathrm{H}), 7.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1.0 \mathrm{H}), 7.76-7.71(\mathrm{~m}, 0.6 \mathrm{H}), 7.60(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 0.9 \mathrm{H}), 7.55-7.26(\mathrm{~m}, 11.0 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 0.6 \mathrm{H}), 7.10-7.04(\mathrm{~m}, 1.6 \mathrm{H}), 6.51(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 0.4 \mathrm{H}$), 1.21-1.14 (m, 9.0H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 197.40,195.74,146.97$, $146.92,146.10,146.05,142.20,142.17,141.25,140.72,140.69,140.52,137.71,136.99,134.14$, $134.05,133.85,133.61,133.52,133.32,132.99,132.05,131.97,131.81,131.73,131.63,131.30$, $131.08,130.99,130.90,130.82,130.77,130.44,130.41,130.00,129.79,129.26,128.95,128.84$, $128.37,128.00,127.89,127.82,127.60,127.49,126.93,126.82,126.76,126.38,126.32,126.21$, $126.05,125.94,125.11,125.05,124.84,124.81,124.65,124.61,124.58,35.25,35.10,34.56$, 34.40, 25.99, 25.81; ${ }^{19}$ F NMR ($376 \mathrm{~Hz}, \mathrm{CDCl}_{3}$) $\delta:-62.93,-62.98$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 507.2$

colorless oil; ${ }^{31} \mathbf{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 40.73,39.51 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.92-$ $7.87(\mathrm{~m}, 1.2 \mathrm{H}), 7.84-7.79(\mathrm{~m}, 0.6 \mathrm{H}), 7.64(\mathrm{~s}, 0.6 \mathrm{H}), 7.60-7.07(\mathrm{~m}, 11.4 \mathrm{H}), 6.58(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $0.4 \mathrm{H}), 1.22-1.14(\mathrm{~m}, 9.0 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 196.92,195.24,146.87,146.81$, $146.13,146.08,142.18,142.15,140.66,140.63,139.92,139.44,137.72,136.69,134.09,134.03$, 134.00 , 133.90, 133.49, 133.40, 132.97, 132.14, 131.95, 131.90, 131.86, 131.81, 131.78, 131.70, $131.53,130.96,130.90,130.85,130.79,130.60,130.58,130.38,130.36,130.32,130.12,129.95$, 129.91, 129.29, 129.12, 129.07, 129.01, 128.57, 128.41, 128.31, 127.99, 127.88, 127.48, 127.43, 127.37, 126.66, 126.32, 126.28, 126.16, 126.05, 125.94, 35.20, 35.18, 34.50, 34.48, 26.04, 25.87; MS (ESI): found [M+H] ${ }^{+}$473.2, 475.2

colorless oil; ${ }^{31} \mathbf{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 41.32,39.17 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.92-$ $7.87(\mathrm{~m}, 0.9 \mathrm{H}), 7.80(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 0.4 \mathrm{H}), 7.60-7.53(\mathrm{~m}, 2.0 \mathrm{H}), 7.51-7.46$ (m, 1.6H), $7.44-7.07(\mathrm{~m}, 11.1 \mathrm{H}), 7.01(\mathrm{dt}, \mathrm{J}=7.6 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.39(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 1.26(\mathrm{t}, J=14.6 \mathrm{~Hz}$, 9.0H), ${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta: 196.07,195.17,147.45,147.39,147.02,146.97,141.98$, $141.94,141.5,141.21,141.18,141.11,137.02,135.24,133.61,132.90,132.83,132.77,132.73$, $132.49,132.27,132.18,132.03,131.99,131.90,131.73$, 131.65, 131.56, 131.28, 130.99, 130.86, $130.71,130.68,130.65,130.61,130.53,130.51,130.46,130.41,130.36,130.15,129.75,129.12$, 128.86, 128.23, 127.74, 127.63, 127.41, 127.30, 126.93, 126.86, 125.95, 125.83, 125.79, 125.68, 119.82, 119.66, 34.90, 34.20, 26.07, 26.02; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 517.2,519.2$

colorless oil; ${ }^{31} \mathbf{P}$ NMR (162 MHz, CDCl_{3}) $\delta: 40.54,39.31 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.06$ (dd, $J=8.6 \mathrm{~Hz}, 5.6 \mathrm{~Hz}, 0.8 \mathrm{H}), 7.91-7.87(\mathrm{~m}, 0.4 \mathrm{H}), 7.79-7.72(\mathrm{~m}, 1.7 \mathrm{H}), 7.62-7.57(\mathrm{~m}, 1.0 \mathrm{H})$, 7.52-7.19 (m, 9.3H), 7.11-7.07 (m, 1.6H), 7.01 (t, $J=8.7 \mathrm{~Hz}, 1.0 \mathrm{H}), 6.84(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1.0 \mathrm{H})$, $6.56(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 0.4 \mathrm{H}), 1.23-1.13(\mathrm{~m}, 9.0 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 197.06,195.47$, $166.51,166.30,163.99,163.79,146.76,146.71,145.90,145.86,141.66,141.63,140.18,140.15$,
138.26, 137.44, 134.26, 133.94, 133.92, 133.59, 133.49, 133.47, 133.38, 133.33, 133.24, 133.06, $132.11,132.03$, $131.92,131.79$, $131.71,131.67$, 131.59, 131.24, 130.90, 130.87, 130.79, 130.74, $130.69,130.57,130.54,130.20,129.81,129.30,128.93,128.54,128.52,128.18,127.97,127.86$, $127.48,127.37,127.12,126.64,126.22,126.09,125.93,125.81,114.98,114.77,114.71,114.49$, 35.18, 35.15, 34.48, 34.45, 26.00, 25.82; ${ }^{19}$ F NMR ($376 \mathrm{~Hz}, \mathrm{CDCl}_{3}$) $\delta:-106.29,-106.61$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 457.1$

colorless oil; ${ }^{31} \mathbf{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 40.93,39.72 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.91-$ $7.84(\mathrm{~m}, 1.0 \mathrm{H}), 7.79-7.77(\mathrm{~m}, 0.7 \mathrm{H}), 7.65(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 0.8 \mathrm{H}), 7.58(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 0.6 \mathrm{H}), 7.53-$ $7.38(\mathrm{~m}, 6.6 \mathrm{H}), 7.32-7.20(\mathrm{~m}, 3.6 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 1.5 \mathrm{H}), 7.07-7.03(\mathrm{~m}, 1.2 \mathrm{H}), 7.69(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, 0.4 H), 2.35-2.19 (m, 3.0H), 1.26-1.12 (m, 9.0H); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta: 198.57,196.75$, $146.79,146.73,146.30,146.26,141.75,141.72,140.59,138.36,138.18,138.00,137.56,137.04$, $134.12,134.03,133.24,133.20,133.15,132.95,132.09,131.98,131.94,131.85,131.76,131.67$, $131.06,131.02,130.95,130.89,130.74,130.39,130.37,130.34,130.20,129.83,129.37,128.94$, $128.55,128.52,128.19,128.02,127.99,127.91,127.83,127.67,127.26,127.15,126.52,126.17$, $126.10,125.97,125.86,35.28,35.11,34.58,34.41,26.06,26.02,21.21,21.19$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 453.2$

colorless oil; ${ }^{31} \mathbf{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 40.39,39.14 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.96-$ $7.88(\mathrm{~m}, 1.0 \mathrm{H}), 7.73(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.4 \mathrm{H}), 7.61-7.52(\mathrm{~m}, 2.6 \mathrm{H}), 7.48-7.34(\mathrm{~m}, 4.8 \mathrm{H}), 7.30-7.19(\mathrm{~m}$, $3.4 \mathrm{H}), 7.17-7.03(\mathrm{~m}, 4.6 \mathrm{H}), 6.53(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 0.4 \mathrm{H}), 2.26-2.23(\mathrm{~m}, 3.0 \mathrm{H}), 1.30-1.17(\mathrm{~m}, 9.0 \mathrm{H}) ;$ ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 199.53,198.20,147.44,147.39,146.96,146.91,141.88,141.84$, $141.12,139.13,139.06,138.76,137.56,137.42,137.13,133.90,133.45,133.35,133.02,132.51$, $132.42,132.36,132.01,131.92,131.83,131.74,131.22,131.06,130.92,130.83,130.78,130.68$, $130.58,130.52,130.50,130.46,130.42,130.40,130.24,130.18,130.08,129.73,129.31,129.23$, 128.84, 128.34, 127.88, 127.77, 127.33, 127.21, 126.73, 126.63, 125.93, 125.83, 125.72, 125.13, $124.87,35.16,35.00,34.46,34.30,26.09,26.07,20.24,20.13$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 453.2$

colorless oil; ${ }^{31} \mathbf{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 40.54,39.31 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.10-$ $8.06(\mathrm{~m}, 0.5 \mathrm{H}), 7.77-7.72(\mathrm{~m}, 0.5 \mathrm{H}), 7.67-7.25(\mathrm{~m}, 9.5 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1.5 \mathrm{H}), 6.86-6.82(\mathrm{~m}$, $0.5 \mathrm{H}), 6.18(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.33(\mathrm{~s}, 1.6 \mathrm{H}), 2.22(\mathrm{~s}, 1.3 \mathrm{H}), 1.30-1.19(\mathrm{~m}, 9.0 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 201.51,199.58,148.28,148.23,148.01,147.96,140.55,139.79,139.17$, $137.39,133.41,132.86,132.77,132.51,132.44,132.41,132.14,132.02,131.98,131.90,131.66$, $131.57,130.88,130.85,130.74,130.71,130.67,130.64,130.58,130.55,130.52,130.12,129.89$, $129.21,129.00,128.21,128.16,127.77,127.56,127.32,127.22,126.97,126.19,126.08,125.68$, 125.56, 34.87, 34.68, 34.17, 33.98, 29.54, 28.71, 25.92, 25.90; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 377.1$

White solid: ${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 38.14,37.74 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.99$ $7.95(\mathrm{~m}, 0.6 \mathrm{H}), 7.85-7.81(\mathrm{~m}, 0.7 \mathrm{H}), 7.69(\mathrm{dd}, J=8.1 \mathrm{~Hz}, 10.3 \mathrm{~Hz}, 0.4 \mathrm{H}), 7.55-7.15(\mathrm{~m}, 11.7 \mathrm{H})$, 7.06-7.02 (m, 1.0H), 7.00-6.91 (m, 1.2H), 6.86-6.80 (m, 1.7H), $6.25(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 0.6 \mathrm{H}), 5.45$ $(\mathrm{dd}, J=28.6 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1.2 \mathrm{H}), 4.93(\mathrm{dd}, J=1.1 \mathrm{~Hz}, 12.2 \mathrm{~Hz}, 0.7 \mathrm{H}), 1.24-1.14(\mathrm{~m}, 9.0 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta: 148.56,147.83,147.56,147.51,147.44,142.09,140.74,140.71$, $140.68,139.82$, $134.06,133.38,133.29,133.18,133.01,132.67,132.58,132.13,132.09,132.01$, $131.96,131.87,131.37,131.26,130.76,130.70,130.68$, 130.58, 130.47, 130.11, 130.09, 129.97, $129.88,129.68,129.63,129.40,129.38,129.30,128.66,127.75,127.65,127.34,127.21,127.04$, $126.83,126.82,126.74,126.51,125.98,125.55,125.51,125.40,125.17,125.06,117.92,117.39$, 35.45, 35.07, 34.75, 34.37, 25.97, 25.74; MS (ESI): found [M+H] 437.2

White solid: ${ }^{31} \mathbf{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 43.23$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 8.02-7.97 (m, $1 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.14(\mathrm{~m}, 7 \mathrm{H}), 7.06-6.98(\mathrm{~m}, 6 \mathrm{H}), 6.55(\mathrm{dt}, J=7.6 \mathrm{~Hz}, 0.3 \mathrm{~Hz}, 1 \mathrm{H})$, 6.19-6.16 (m, 1H), $5.87(\mathrm{~s}, 1 \mathrm{H}), 5.72(\mathrm{dd}, J=7.9 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 146.75(\mathrm{~d}, J=5.3 \mathrm{~Hz}), 144.96,141.91,138.38(\mathrm{~d}, \mathrm{~J}=3.5 \mathrm{~Hz}), 133.08$ (d, $J=9.1 \mathrm{~Hz}), 131.91,131.68(\mathrm{~d}, J=8.9 \mathrm{~Hz}), 130.95,130.87(\mathrm{~d}, J=22.3 \mathrm{~Hz}), 129.99(\mathrm{~d}, J=2.3$
$\mathrm{Hz}), 129.58,129.45(\mathrm{~d}, J=11.0 \mathrm{~Hz}), 129.28,128.83(\mathrm{~d}, J=89.4 \mathrm{~Hz}), 127.56(\mathrm{~d}, J=11.5 \mathrm{~Hz})$, 127.16, 126.96, 125.52, 125.48, $125.36(\mathrm{~d}, J=11.5 \mathrm{~Hz}), 76.95,33.98(\mathrm{~d}, J=69.7 \mathrm{~Hz}), 25.60$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 441.2$

White solid: ${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 43.23 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 10.56(\mathrm{~d}, J=$ $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 4 \mathrm{H}), 7.09(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{~Hz}), 7.03-6.97(\mathrm{~m}, 3 \mathrm{H})$, $6.65(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.23(\mathrm{~m}, 6 \mathrm{H}), 0.95$ $(\mathrm{dt}, J=8.1 \mathrm{~Hz}, 7.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 161.90,145.95(\mathrm{~d}, J=4.3 \mathrm{~Hz}$), 140.84, 137.65, 133.77, 132.56 (d, $J=9.0 \mathrm{~Hz}$), 129.95, 129.88, 129.85, 129.78, 128.88, 128.52, $128.08,127.57,127.49,127.09,126.58,126.47,125.70,28.00(\mathrm{~d}, J=67.5 \mathrm{~Hz}), 24.23(\mathrm{~d}, J=66.5$ $\mathrm{Hz}), 16.66,15.67(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 15.53(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 14.58(\mathrm{~d}, J=2.4 \mathrm{~Hz}) ; \mathbf{M S}(\mathbf{E S I})$: found $[\mathrm{M}+\mathrm{H}]^{+} 406.2$

White solid: ${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 57.60 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.68(\mathrm{~s}, 1 \mathrm{H})$, 7.29-7.06 (m, 13H), 6.89-6.82 (m, 3H), $6.00(\mathrm{dd}, J=7.7 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.30$ $(\mathrm{s}, 1 \mathrm{H}), 2.26-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.22(\mathrm{~m}, 6 \mathrm{H}), 1.13-1.00(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $148.66(\mathrm{~d}, ~ J=4.5 \mathrm{~Hz}), 146.15(\mathrm{~d}, ~ J=2.5 \mathrm{~Hz}), 145.81,141.42(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 135.89,132.57(\mathrm{~d}, J$ $=9.5 \mathrm{~Hz}), 131.84,130.00(\mathrm{~d}, J=10.8 \mathrm{~Hz}), 129.26,128.88(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 128.43,128.23,127.58$, 127.16, 126.86, 126.36, 126.33, $125.69(\mathrm{~d}, J=13.9 \mathrm{~Hz}), 124.88(\mathrm{~d}, J=11.2 \mathrm{~Hz}), 80.90,28.41(\mathrm{~d}$, $J=65.2 \mathrm{~Hz}), 24.30(\mathrm{~d}, J=66.4 \mathrm{~Hz}), 20.95,16.49,16.24(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 16.12(\mathrm{~d}, J=1.8 \mathrm{~Hz})$, 15.33 (d, J = 2.4 Hz); MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 483.2$

VII. NMR charts


```
    ***)
```


(

Vag

coses)

Vif

$\begin{array}{lllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30\end{array} 20$

¢8
$\dot{0}$
$\dot{0} \%$

$\begin{array}{lllllllllllllllllll} \\ 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30\end{array}$

骨高
河
V

Coses)

Nand

$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

$\left.\begin{array}{lllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}\right)$

(s)

$\stackrel{\stackrel{\sim}{N}}{\stackrel{1}{2}}$

n＋

"5RN S\%
ジゅヴが
Pn
$\begin{array}{lllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

[^0]: ${ }^{a}$ Reaction conditions: 1a $(0.3 \mathrm{mmol})$, benzyl alcohol $(0.6 \mathrm{mmol})$, Pd catalyst ($10 \mathrm{~mol} \%$), oxidant (0.75 mmol), solvent $(1.5 \mathrm{~mL}), 100^{\circ} \mathrm{C}$ for 16 h under air atmosphere unless otherwise noted. ${ }^{b}$ Isolated yield. ${ }^{c}$ Ratio of 2a: 3a. ${ }^{d}$ $80^{\circ} \mathrm{C} .{ }^{e} 60^{\circ} \mathrm{C}$.

